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Assertion and inference

21 February 2012

First of all I would like to thank you for giving me this opportunity of speaking

in honour of Alfred Tarski. There was no hesitation on my part in accepting this,

because I have actually done some work recently that has directly to do with

Tarski’s treatment of logical consequence in particular, based on his previous

work on the notion of truth. That gives a natural filling of these three lectures,

because I want to reach Tarski in the last lecture, Tarski’s notion of logical

consequence. One of the things that I hope to make you understand is that

before Tarski’s metamathematical notion of logical consequence there is the

ordinary notion of logical, or formal, consequence—pre-mathematical, if you

want, but I think I will call it the ordinary notion of logical consequence. That

notion Tarski simply took for granted. In the second lecture, or maybe towards

the end of this lecture, I will give a precise explanation of it.

A further notion is needed in explaining the ordinary notion of logical conse-

quence, namely the notion of inference. Since inference is needed in explaining

consequence, inference has to be treated first, contrary to the standard way in

ordinary textbooks of the metamathematical style. With the notion of infer-

ence, we are so close to the beginnings of logic that we might as well start from

the very beginning, and ask, What is logic? How is the subject to be delimited?

The word logic comes from the Greek ἡ λογική—that is the adjective λογικός

substantivized in the feminine, meaning that it was routinely taken to be fol-

lowed by τέχνη or ἐπιστήμη, art or science, so logical art or logical science. This

does not go back to Aristotle, but it is from the Ancient time, not too long

before the birth of Christ. We know how it is understood, because already at

the time of Cicero, it was clear that by logic one understood ars logica, so the

art of reasoning—whether we say the art of reasoning or the art of inference

does not matter much, but the standard formulation is, no doubt, the art of

reasoning.

I think neither art nor science is good here. Art is fine for skilled activity,

as is taught in elementary logic courses, both in philosophy and mathematics:
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these are, basically, training courses helping the students to reason correctly.

That is, however, not what we primarily have in mind when we speak about

logic. Science, on the other hand, is no good at all, because science is ordinarily

associated with demonstrative science, and logic is definitely not demonstrative

primarily—rather, logic is the theory of demonstrative science: it brings out the

structure of demonstrative science.

I think a less committing term like, simply, the study of reasoning or, best

of all, the theory of reasoning, is a better choice than either art or science. A

piece of reasoning is a gapless chain of immediate inferences. The notion of

reasoning thus presupposes the notion of inference, hence it is an improvement

in the formulation to say that logic is the study, or the theory, of inference—but

that is such a small improvement that it does not matter much whether you say

the one or the other.

What is an inference then? An inference occurs when we pass from certain

assertions, or judgements, that we have previously made to a new assertion,

or judgement, which becomes justified precisely by the inference that we are

performing. From this explanation it is clear that the notion of inference is

not the very first notion, because we need to speak first about assertion, or

judgement. An inference is a passage from premisses, which are all assertions,

or judgements, to a conclusion, which is a further assertion, or judgement. We

should therefore say something like, Logic is the study of—whether we say

assertion, or judgement—and inference: assertion, or judgement, has to come

first, before inference.

You have already noted a hesitation here on my part, namely whether to use

the term assertion or the term judgement. On this point I am really ambiva-

lent. The term judgement was the standard term in the whole era of modern

philosophy, beginning with Descartes via Kant up to Frege and Husserl. How

come that we lost it? That is, essentially, because of the revolt against British

idealism about a hundred years ago. Russell started to use the excellent term

assertion already in the Principles of Mathematics from 1903. The term judge-

ment was really a hot potato at the time in British philosophy. Moore’s famous

paper “The nature of judgement”, which was his revolt, was from 1899. The

term judgement thus got out of use, but now a hundred years have passed, and

it is not so hot any longer, so we are free to use which one of these terms we

prefer.

There is a well-established convention, from several hundred years ago, of

using judgement for the mental act, as well as for the object of that act, and

on the other hand, assertion for the verbal expression of the mental. One might

thus say, Fine, we have both these terms, so let us use judgement for the mental

and assertion for the linguistic, the verbal. The trouble with that solution is

that it does not fit the needs of logic. As logicians we are equally interested in
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the laws of thought as we are in the laws of reasoning, whether in speech, or in

writing, or even, nowadays, by the aid of a computer system, like the present

computer implementations of type theory. We are using different media, and

the important insight of logic is that the rules are the same: we do not care if

it is mental or expressed in the verbal medium.

Hence, if we were to stick to this standard usage, then we would somehow lose

both terms, because we want a term that is neutral. I think that is the reason

for my own oscillation here. I am used to using these terms interchangeably,

and if we need in some situation to qualify ourselves by saying that we are

particularly interested in how this is performed mentally, then we can speak of

the mental judgement, or assertion, and conversely we can speak of the verbal

one. I will therefore not stick to this practice of using judgement for the mental

and assertion for the verbal, for the reason that I just said. Nor am I going to

take any stand on the order of priority between language and thought, because

I need not. The stand that I have already taken is that logic deals with both,

and the laws are the same—just as in elementary arithmetic, we do not care if

the calculations are performed in our minds, so we are doing mental arithmetic,

or if we are doing them in the standard way on the blackboard or whatever

medium we use.

We have arrived at the definition of logic as the study, or theory, of assertion

and inference, and the question is, To whom is that due? As the study of

reasoning—that is ancient, as I have already said, but this formulation cannot

be traced as far back as that. Unexpectedly, the earliest place I know of is in

Bradley and Bosanquet, precisely the British idealists that Russell and Moore

revolted against. They both took judgement and inference to be the main

headlines for logic. Still in Britain, when CookWilson’s posthumous papers were

edited in 1926, one chose as title for those two volumes Statement and Inference,

which amounts to the same in this case, but just reflects Cook Wilson’s realism,

I mean, Oxford realism—it is again the revolt against the previous idealism,

but whether we say assertion and inference or statement and inference does not

matter in this connection.

I said a moment ago that the term judgement is tied to the era of modern

philosophy from Descartes up to Husserl. During the whole of that era, episte-

mology was at the centre, so the question is, What is the relation now between

assertion, or judgement, and the concept of knowledge, more precisely demon-

strative knowledge? To my mind it is this, that demonstrative knowledge is to

be equated with reasoned judgement, or assertion:

demonstrative knowledge =

reasoned

grounded

justified

demonstrated


judgement

assertion
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Whether we say reasoned or grounded or justified or, as in mathematics, demon-

strated does not matter: the important thing is that we have one term here for

what justifies or grounds an assertion, or judgement. In mathematics, of course,

there is only one word for what justifies an assertion, namely proof, or demon-

stration. A demonstration is a chain of immediate inferences, and an immediate

inference is one in which, given the premisses, the conclusion neither needs nor

is capable of any further demonstrative justification, but rather is justified be-

cause of how the concepts involved in the formulation of the premisses and the

conclusion have been defined. In the more modern formulation, the conclusion

of an immediate inference is justified in virtue of the meanings of the terms in

terms of which the inference is formulated.

If this is the relation between demonstrative knowledge and the concept of

assertion, or judgement, then you see that we have one term, demonstrative

knowledge, with two components in it. These two components, assertion and

demonstration, were the ones that made up my previous formulation of what

logic is, so we can actually, if we want, change it into the more compact formula-

tion that logic is the theory, or study, of demonstrative knowledge, of the system

of demonstrative knowledge. This, to my mind, is the reason why Bolzano was

right in calling his logic Wissenschaftslehre, correctly translated into English as

Theory of Science. One would have expected it to be called his Logic, because

it was his logic, but it is actually called Theory of Science. One explanation

for the choice of title, I take it, is that after Fichte had published his Wissen-

schaftslehre Bolzano wanted to show what a decent Wissenschaftslehre ought

to look like, hence he chose his title for the big work.

You see that the definition of logic that I have arrived at is given in epis-

temological terms. It is very instructive to see what happens if we try instead

to define logic in objective or ontological terms. What would you say? What

objects is logic about? Well, you would start by saying that it is about propo-

sitions, truth and consequence, which I have chosen for the title of my second

lecture. That is a good first approximation, but on second thought you realize,

That is just propositional logic, much too limited—we must include at least

predicate logic also, so logic deals then also with individual domains, and func-

tions from an individual domain into itself, and with propositional functions of

any number of variables over an individual domain. The quantifiers presuppose

these latter items. Now I have mentioned some other objectivities: could this

serve as a definition of logic, that it is about these? No, the same problem arises

immediately: what about arithmetic? Zero, successor, induction and recursion

are not included in the previous list, but we need that also. Now we have per-

haps something that is adequate for arithmetic, but then that is not all in logic:

we also deal with transfinite or general inductive definitions, so then comes all

the concepts connected with that. This is still not everything, because there are
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other ideas, like Grothendieck universes, whether in the sense of ZF set theory

or in the sense of type theory: a universe in that sense is a new idea. These

considerations are enough to make clear that, however we try to delimit logic

in objective, or ontological, terms, we do not succeed: we merely succeed in

delimiting a particular logical system which is not all-encompassing.

If one were contacted by Webster Dictionary to write the lemma on logic, it

could perhaps look something like this:

logic, n.

1 (uncountable) the study of judgement, or assertion, and inference

in general

2 (countable) a specific system of forms of judgement and inference,

like propositional logic, predicate logic, etc.

We have two senses of logic. In the first sense, logic is not plural-forming, but

then there is the more modern second sense, where it is countable: a logic refers

to a system of forms of judgement and inference. The difference between these

two senses now is that the first is epistemological, whereas the second is given

in ontological terms. It is clear that we have an order of priority here, which

we can do nothing about, namely that the first has to come before, because

it is presupposed by, the second. If we take the term logical system, then the

adjective logical that I use there is precisely the adjective formed from logic in

sense one, because it is a system of judgement and inference. Sense one is thus,

no doubt, prior to sense two.

This gives already an indication of something which I want to get back to

later, namely that we have an order of priority between the epistemological and

the ontological, namely that the epistemological notions have to come before

the ontological notions. This will come out more clearly in the sequel in the

form that when explaining the ontological notions, the epistemological notions

of assertion and inference have already to be in place. In particular, as I said

already, in the case of the notion of logical consequence, which is an ontological

notion—we need inference in order to explain it.

Now let me go over to a more systematic treatment of this. Where to start

from then? The only viable starting point that I can see here is to go back to

the act/object dichotomy, of Scholastic origin, so the notion of object here is the

Scholastic notion of object: when I wish something, there is that which I wish

and my wishing it, and when I fear something, there is the object of my fear,

which may be the same as someone else’s wish. A closely related dichotomy is the

process/product dichotomy, which is, above all, associated with Twardowski—it

is the centenary this year of Twardowski’s well-known paper on the subject.

I am starting from this in order to narrow it down to the notion of speech

act. A speech act is a clear example of a productive act, and its product is
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the complete sentence that we utter. Only by uttering a complete sentence can

we say something meaningfully: it is, so to say, the unit by means of which we

perform a speech act. We have an enormous variety of different acts, whether

we think of them as speech acts or as acts of thinking: acts of thinking was

the old way—Descartes described the cogito, after all, not the dico—but with

Austin it was speech acts that came into focus instead. In agreement with what

I said previously, however, it does not matter for logic whether we are dealing

with acts of thinking or speaking as long as the structure is the same.

Among this variety of speech acts, or acts of thinking, perhaps the most

basic one of all—although I have no good argument for that—is the act of

asserting, or judging, with the correlated assertion, or judgement. Let us look

at the act/object distinction and the process/product distinction in the case of

assertion.

⊢ C
act of making

assertion made

act of asserting that which
is asserted

From the process/product point of view, there is an act of making, and the

product is that which is made, so in the case of assertion, it is the assertion

made. The assertion made consists of two parts, namely what Frege called the

force and the content. In the case of assertion, it is standard to use the assertion

sign, ⊢, for the force, and then we have the content, C. The process is the act

of making, and the product is the assertion made—assertion because that is

the force which is present here. This is the process/product dichotomy. If we

instead start from the act/object dichotomy, we get the division line after the

assertion sign instead, so we get the act of asserting, and what remains then is

that which is asserted, which is the content.

In general, if we perform a speech act, then there is the speech product, which

is a complete sentence. If we look at the structure of the complete sentence, the

first that we meet is the force/content structure, which it is natural to write as

force(content)

since the force is unsaturated and needs a content in order to form a complete

sentence—Austin may have been the first to write it in this functional form,

F (C). That is the first structure that we meet. There are many forces—I have

given examples of some of them—and for each force, there will have to be a

semantical explanation of that force, laying down under what condition we have

the right to utter a sentence of the form in question.
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I am not going to treat any other forces here than the assertoric force. That

corresponds to a distinction between logic in the wide and the narrow sense. I

mean by logic in the narrow sense the logic of assertion, which deals only with

assertions, whereas it is quite natural to conceive of logic in the wider sense

as dealing with all kinds of forces, in particular, questions and commands and

conjectures and doubts and so on. Of course, assertion is the main object and

is, at the present, infinitely better treated than these other forces, so I will limit

myself to the assertoric force.

We are faced with the semantical question, How are the two components,

the assertoric force, ⊢, and the content, C, to be explained? To my mind, the

meaning of the assertoric force, that is, of the assertion sign, is given by stipu-

lating that the condition under which you have the right to make a judgement,

or an assertion, is that you have justified, or grounded, or demonstrated, it.

When I make a judgement, even if it happens to be correct in the sense that

someone else might have correctly made the same judgement—if I do not have

grounds for it, then I am violating this rule which determines the meaning of

the assertion sign. A more captious way of formulating it is negatively: do not

make any ungrounded assertions. For an intuitionist, the negative formulation

is not so good, and that is why I put it in the positive form: in order to have

the right to make an assertion, you must have good grounds for it. That is the

semantic explanation of the assertoric force.

What about the other component, the content? How is the content defined?

It has to be the complementary thing, namely by laying down what it is that

you must know, which is to say, have justified, grounded or demonstrated, in

order to have the right to make it. What knowledge is it that you must have

in order to have the right to make it? What that is in a particular case will

depend on the form of the content in turn, so then we are beginning to go into

the inner structure of the content. Before we go into the inner structure of the

content, the only thing we can say in general is what I just said, namely that

the content is defined by laying down what it is that you must know in order

to have the right to make an assertion with that content.

Now we have, so to say, peeled off the outermost meaning component of an

assertion, and what remains is the content. If we are going to say anything

more than what I just said about the content, we cannot do that in general,

but we have to go into the inner structure of the content. That means that we

are now precisely at the borderline between the epistemological part of logic,

with which I had to begin, and the ontological part of logic. The step from

the epistemological to the ontological occurs precisely when we pass from the

force/content structure to the inner structure of the content: that is when the

ontological notions begin to appear.

I said already that I am going to limit myself to the assertoric force, but
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maybe I should say that if one considers logic in the wide sense, where one has,

not only the assertoric force, but also other forces, then epistemology is not

sufficiently wide to include the other forces, because epistemology is tied to the

assertoric force. If you allow other forces, like conjecture and doubt and wish

and so on, then you will have to use another term than epistemology, and the

best that I can find is to say pragmatics: pragmatics would be defined as the

theory of the various forces, whereas ontology is the theory of content.

Now let us start going into the content. That has to be done by starting

to display at least one form, but presumably several forms, of content, and

they have to come in a particular order, some of them before others. I will

take a rather big step now and display directly the logical-consequence form of

judgement, so that we can see what we have to do before actually coming to it.

Since the lecture as a whole is centred around the notion of logical consequence,

let us display the form—I forgot to make a remark regarding the term logical

consequence, so let me do that first.

I distinguished the ordinary notion of logical consequence from Tarski’s

metamathematical reconstruction of it. What was the ordinary notion of logical

consequence, and what was the term used for it? As far as I know, the term log-

ical consequence is from Tarski: I have not seen any use of logical consequence

before Tarski. The term that was used before, and Tarski was well aware of

that, because he says in at least one place in the consequence paper from 1936,

“logical, i.e. formal consequence”—Tarski was well aware that these terms, for-

mal versus material consequence, were Scholastic terms, which had been there

for a very long time. What I just quoted shows that Tarksi equated logical

consequence with formal consequence, so he might just as well have chosen the

term formal consequence.

Formal consequence is implicit in Aristotle’s syllogistics. The very term

consequence is from the Latin translation of the Greek ἀκολούθησις, which is in

Aristotle’s Organon, in particular in the Prior Analytics. It is there in maybe

only one place, so it is not a common term, but it is the term that was translated

into consequentia in Latin by Boethius. That the notion of formal consequence is

implicit in Aristotle is quite clear if you look at his definition of the syllogism and

his whole treatment, showing which syllogisms are valid and which syllogisms are

not valid by giving counterexamples: the syllogisms that are valid are precisely

those that are expressed by formal consequences. I do not think it is correct to

say that it is more than implicit in the Prior Analytics. It became a chapter of

its own in logic only in the 1400s, a chapter standardly called De consequentiis,

where we get the distinction between formal versus material consequence that

Tarski used. Such chapters begin to appear with Ockham, and Buridan is

particularly important here. What is more well known in connection with Tarski

is Bolzano’s notion of Ableitbarkeit. It is astonishing that Bolzano, with his
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very thorough historical references, finds this new term and does not use the

Scholastic terminology. I think the only explanation is that, on this point,

he simply did not have access to the Scholastic treatises on consequences, so

Bolzano seems to be independent from the Scholastic sources. In all these cases,

it is what I called the ordinary notion of consequence, formal or material, that

is at stake, not the metamathematical notion.

A formal consequence says that one proposition, A, is true provided finitely

many other propositions are true, however certain parts are varied:

A true (x1 : α1, . . . , xm : αm, Am+1 true, . . . , An true) (Con)

We vary finitely many parts, x1, . . . , xn, and they have to be typed, and then we

have the finitely many other propositions, Am+1, . . . , An, whose truth guaran-

tees the truth of A. The variables have to be typed, because we have to vary the

individual domains and the predicates and the function constants. We see then

the need for dependent types: the predicate constants will get a type that will

depend on an individual domain and similarly with the function constants. I

will therefore use dependent type theory—whether you want to call it construc-

tive or intuitionistic or dependent type theory, that is all the same—in order

to analyze the notion of formal, or logical, consequence, because it has got the

conceptual machinery needed for this variation.

When the German translation of Tarski’s Wahrheitsbegriff, originally pub-

lished in Polish in 1933, had been made in 1935, Tarski added a rather long

Nachwort. How I interpret this is that up to that time he had taken Leśniewski’s

doctrine of semantical categories quite seriously and had more or less identified

that with simple type theory. Whether that is correct or not, I cannot judge,

because I do not know Leśniewski enough. I would rather think that there are

differences between them, but at least Tarski opted for simple type theory in

the late 1920s when it got formulated and presented, in particular, in Carnap’s

Abriss der Logistik from 1929. In 1935, when he wrote this postscript, it was

clear that he was already disenchanted with simple type theory, and the reason,

I take it, was that it is unable to deal with the variation over all structures that

you need when you define logical consequence. The simple theory of types does

not have dependent types, so you cannot do that in any simple way. Tarski

therefore switched, at this time, from simple type theory as his basic framework

to ZF set theory: in set theory we do not have problems speaking about all

structures, because we have the set-theoretic universe. This is at least my in-

terpretation of what Tarski says in this postscript. Now, with dependent type

theory, the situation is different, because we can make this variation.

As you can see, I am using the colon for the copula. That is now the standard

notation, although it was not my first choice. I thought originally that one ought

to honour Peano by using his ε, for ἐστί(ν), for the copula, but when this new
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form of type theory came into existence through De Bruijn’s and my work, it

was apparently felt that the epsilon was so strongly tied to ZF-style set theory

that it was no good to use it. De Bruijn therefore introduced the colon instead.

Since I have displayed the form of judgement (Con), let me also explain what

it means before we finish today. What do we expect as the meaning explanation

of this form of content? We have to lay down what it is that we must know in

order to have the right to make an assertion, or judgement, of this form. The

answer is that we must know a proof of A from the assumptions Am+1, . . . , An,

a proof which, moreover, is a free-variable proof with respect to the variables

x1, . . . , xm. In the informal but familiar notation of natural deduction, the proof

could be written perhaps like this:

xm+1

Am+1(x1, . . . , xm)
xn

An(x1, . . . , xm)

A(x1, . . . , xm)

(Ded)

The proof starts from the assumptions Am+1, . . . , An, and not only A, but

also Am+1, . . . , An may depend on the variables x1, . . . , xn, as indicated in the

diagram. In natural deduction the assumptions are labelled, and I use the labels

xm+1, . . . , xn. This notation is still defective, since it has no indication of the

types of the variables. One could of course write those as superscripts, as one

usually does in type theory, but it is difficult to work with that notation, so I

am writing it in this way, which is more familiar.

My meaning explanation was that in order to have the right to make a judge-

ment of the form (Con) we should have a deduction of A from the assumptions

Am+1, . . . , An that is, moreover, a free-variable deduction with respect to the

variables x1, . . . , xm. In type theory the whole deduction (Ded) becomes instead

denoted by a single symbol, a, which is a proof of A depending on the variables

x1, of type α1, up to xm, of type αm, and depending, moreover, on assumed

proofs xm+1 of Am+1 up to xn of type An,

a : A (x1 : α1, . . . , xm : αm, xm+1 : pr(Am+1), . . . , xn : pr(An))

So in type-theoretical notation, the whole figure (Ded) is written by means of a

single letter, a, or if we wish to indicate the variable dependencies,

a(x1, . . . , xm, xm+1, . . . , xn)

The meaning explanation of (Con) is that in order to have the right to make an

assertion of that form, you need to have in your possession such a proof a.
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Proposition, truth and consequence

22 February 2012

Remember where we were at the end of yesterday’s lecture. I introduced the

form of judgement that expresses that a proposition, A, is a formal, or logical,

consequence of some other propositions, Am+1, . . . , An.

A true (x1 : α1, . . . , xm : αm, Am+1 true, . . . , An true) (Con)

That is simply a form of judgement introduced into constructive type theory.

Moreover, I not only introduced the form, I also gave the meaning explanation

for it. According to the general explanation of what a judgemental content is,

one has to lay down what you must know in order to have the right to make

a judgement of this form. The answer was that in order to have that right, or

be allowed to do that, you need to possess a proof of A which depends on the

quantities, x1, . . . , xm, that are varied, and also on arbitrarily given proofs of

the propositions Am+1, . . . , An which I called xm+1, . . . , xn.

a : pr(A) (x1 : α1, . . . , xm : αm, xm+1 : pr(Am+1), . . . , xn : pr(An)) (P)

If that is the meaning explanation, then it is clear that the inference rule

with (P) as premiss and (Con) as conclusion is valid:

a : pr(A) (x1 : α1, . . . , xm : αm, xm+1 : pr(Am+1), . . . , xn : pr(An))

A true (x1 : α1, . . . , xm : αm, Am+1 true, . . . , An true)

If you know the premiss, you have the right to make the judgement in the

conclusion. This can just as well be turned around: we can just as well say that

the meaning of the judgement that occurs in the conclusion is determined by

this rule. In the first way, one gives a meaning explanation which is phrased

in such a way that it sounds as if it is independent of the rules, but then, once

you have written this rule down, you realize that you may as well say that the

meaning of the form of judgement in the conclusion is determined by this rule.

This is a pattern that is followed by all other meaning explanations, so we shall
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have many examples of this.

I have not said what the presuppositions are of the judgements (Con) and

(P). They are as follows:

α1 : type

...

αm : type (x1 : α1, . . . , xm−1 : αm−1)

Am+1 : prop (x1 : α1, . . . , xm : αm)

...

An : prop (x1 : α1, . . . , xm : αm)

A : prop (x1 : α1, . . . , xm : αm)

That the types and propositions are allowed to depend on variables is essential

if we want to have generality with respect to all first-order structures.

What do I mean by presuppositions? That really belongs in the first part of

yesterday’s lecture. Immediately after you have introduced the notion of asser-

tion, or judgement, you should say that, in general, an assertion, or judgement,

has presuppositions—presupposition means that certain other judgements have

to have been established in order for the judgement in question even to make

sense. The most typical example is if you say that a is an element of a set

A—this presupposes that A is a set. If you say that the proposition A is true,

then it is presupposed that A is a proposition, and if you say that f is a function

from a set A into a set B, then it is presupposed that both A and B are sets.

The numbers m and n in (Con) are arbitrary, except that m is less than or

equal to n. There are several cases we may distinguish. When both m and n

are zero, then we have the rule

a : pr(A)

A true

This rule is meaning determining for the categorical form of judgement A true,

in which you hold a proposition, A, to be true. If m is zero, but n is bigger,

then we have no variables, but we have hypothses, or assumptions, so we get

the ordinary notion of consequence. If m is greater than zero and equal to n,

then we have no assumptions, only the variables, so we get logical, or formal,

truth. Finally, if we have both variation and assumptions, then we get logical

consequence.

0 = m = n truth

0 = m < n consequence

0 < m = n logical truth

0 < m < n logical consequence
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It should be observed here that it is not that you first have the definition

of categorical truth and then use that to define consequence. It is rather the

other way around, that you have the consequence judgement that you explain

in general, as I did it, and it specializes to the case where both m and n are

zero.

In these meaning explanations you see an example of what I tend to call

insertion, respectively deletion, or suppression, of proof objects. Giovanni Sam-

bin at Padua calls this the forget-restore principle—forget corresponds to delete

and restore to insert. In the logical-consequence form (Con) there are no proof

objects of the proposition A. We just have the locution that a proposition is

true, both in the thesis and in the hypotheses. But when I explained it, what I

did was to insert proof objects, both in the thesis and in the hypotheses, follow-

ing the rule that in the hypotheses you have to insert variables, whereas in the

thesis, the positive part, you have to insert an in general complex proof object.

That is an example of insertion of proof objects. In the other direction you

have suppression of proof objects. What is important whenever you suppress

proof objects is that you must be able to insert them again, since it is the full

judgement, with the proof objects inserted, that forms the rock bottom of the

semantics.

A categorical judgement of the form A true is the most important case of

suppression of proof object. We have a proof of A, but we do not give it

explicitly, we just say that A is true. In order to have the right to do that,

we must have access to a proof, in one way or another. Let us say that A is a

disjunction, P ∨Q. If I assert that A is true, then someone else might come and

ask me whether it is P or Q that is true. I shall not be able to tell him unless I

have access to the proof object, which is a program that allows me to do that,

because of how disjunction is defined.

By insertion of the proof objects, we reduced the form of judgement (Con)

to the form (P). It remains, of course, to explain (P), but now we are much

closer to the bottom, because the basic forms of judgement of constructive type

theory are these:

α : type (x1 : α1, . . . , xn : αn) (1)

α = β : type (x1 : α1, . . . , xn : αn) (2)

a : α (x1 : α1, . . . , xn : αn) (3)

a = b : α (x1 : α1, . . . , xn : αn) (4)

The form (P) is an example of (3), because of the rule

A : prop

pr(A) : type
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If A is a proposition, then pr(A) is a type, namely the type of proofs of A—I am

not writing out possible assumptions here, but use the more informal natural-

deduction style. Once we have this rule and remember the presuppositions, then

it is clear that (P) is an instance of (3).

Let me at least sketch the semantical explanations that you have to give

for the basic forms. That begins with the first two forms, (1) and (2), which

concern types and type equalities. I should say that these equalities are what

Gödel called in his Dialectica paper intensional, or definitional, equalities. I will

pay as little as possible attention to them in these lectures, so you could put a

parentheses around (2) and (4) and concentrate on (1) and (3).

For the first form of judgement,

α : type (x1 : α1, . . . , xn : αn) (1)

I have to explain what a type is, a type that may, in general, depend on variables.

What the types are is, in the first instance, explained by giving the rules of type

formation for this language, and they are a direct generalization of Church’s

rules for the simple theory of types.

Here are the three rules of type formation, written again in the informal

natural-deduction style,

prop : type
A : prop

pr(A) : type
α : type

(x : α)

β : type

(x : α)β : type

Following the Curry–Howard correspondence, the two first rules can instead be

written

set : type
A : set

el(A) : type

Type theory is based on the Curry–Howard idea of identifying propositions and

sets—as I have decided to call them. One might object to this terminological

choice, since set is so tied to Zermelo’s conception of set, the cumulative hier-

archy conception of set. In predicate logic we speak of individual domain and

quantificational domain, so domain sounds perfect, but then the problem is with

Dana Scott’s domain theory—especially in computer science, the term domain

is so tied to that, so it is not good either. Many people therefore use type here,

instead of my set, but for me type is so tied to type in the sense of simple type

theory, where you have the simple type structure, which is not what you have

here. Some compromise therefore has to be made. My choice has been to use

set, thinking that, Why should we pay so big attention to Zermelo’s use of it?

After all, the notion of set comes from Cantor, and his use of it is much closer

to what appears in the Curry–Howard correspondence. That is my reason for

the choice here.
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I should add that what I have to say in these lectures does not depend at

all on the identification of sets and propositions, so we need not rely on it. The

only thing that happens if you do not identify sets and propositions is that you

would have two distinct types, a type of sets and a type of propositions. I leave

that possibility open.

Let us make the comparison now with the type structure of the simple theory

of types,

o : type ι : type
α : type β : type

(α)β : type

Church had a ground type o, the type of propositions, so that is only notationally

different from the type prop above. Then he had the type ι of individuals. Here

we have a vast generalization, because we have not only one type of individuals,

but any proposition, or set, gives rise to a type, namely, in the case of a set, the

type of elements of that set, and in the case of a proposition, the type of proofs

of that proposition. Moreover, the propositions, or sets, are built up within the

theory itself. To interpret Church’s type structure, we can let ι be some fixed

type el(A), where A is a set,

ι = el(A) : type

In the final rule, (α)β is the function type from α to β written in Schütte’s

notation. When β does not depend on any variable, then we can pick a variable,

x, and define

(α)β = (x : α)β : type

We thus see that Church’s type structure is included in this dependent type

structure.

These are the formal rules for the type structure. It is, however, not enough

just to give a notation for types: we must also explain what an object of any

given type is. In particular, we have to answer the questions, What is a propo-

sition? and, What is a proof of the proposition A? And then we have to answer

the question, What is an object of the dependent function type, (x : α)β?

I will take the dependent function type first. Assume that the premisses,

α : type and
x : α

β : type

have been established. What is an object of the type (x : α)β? It is a function,

f , such that if you take an object a of type α, then you get an object, f(a), of

type β(a/x), and if you take equal objects, a and a′, of type α, then you get

equal objects, f(a) and f(a′), of type β(a/x). This is simply taking seriously

what is said about functions in elementary textbooks. Again we are in the

situation that I could either say what I just said and then continue by saying
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that, in virtue of those explanations, these rules are valid:

f : (x : α)β a : α

f(a) : β(a/x)

f : (x : α)β a = a′ : α

f(a) = f(a′) : β(a/x)

We could, however, just as well say that the meaning of the form of judgement

f : (x : α)β can be read off from these rules.

It is natural to extend Gentzen’s use of the term introduction and elimination

rule and say that when a judgement whose meaning is being defined occurs in

the conclusion, it is defined by its introduction rule, whereas when it occurs as

premiss, it is defined by the elimination rule. In this terminology we can say

that the form of judgment (Con) is defined by its introduction rule, whereas the

form of judgement f : (x : α)β is defined by its elimination rules.

When a form of judgement is explained by an elimination rule, we can use

a very good term introduced by Ryle, namely inference licence, or inference

ticket. A judgement of the form in question is then an inference licence which

licenses you to infer the conclusion from the additional premisses. This works

only for those forms of judgement that occur as premisses, which is to say, that

you infer from. It does not work for the forms of judgement that are defined by

introduction rules, like all the logical operations, for instance.

That was the semantical explanation that goes with the rule of dependent

function type formation, the third rule above. The rule claims that (x : α)β

is a type, which means that we have to explain what an object of that type

is—which I have just done. It remains now the crucial cases of the base types:

the type of propositions and the type of proofs of a proposition.

The question we first have to answer is, What is a proposition? Many

proposals have been given, but I shall discuss only the two that are viable from

my point of view. Of the traditional definitions, the one that I will consider,

because I think it is the best, is saying that a proposition is defined by its truth

conditions. I want to show in particular that that answer, properly interpreted,

is fine also from a constructive point of view: you just have to make the truth

conditions more detailed by turning them into proof conditions, by insertion of

proof objects. Truth conditions are obtained from proof conditions by deletion

of proof objects, and conversely, proof conditions, which is to say the clauses

in the Brouwer–Heyting–Kolmogorov interpretation, are obtained from truth

conditions by insertion of proof objects. Let me exemplify that in the case of

conjunction.

The truth condition for conjunction is that A & B is true if both A and B

are true. Now the question is, How do you interpret that? There are many ways

in which that has been interpreted in the literature. There is something of that

sort even in Tarski’s truth definition, which is completely different from what I

am going to say now. I am going to write the truth condition for conjunction
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in this form:
A true B true

A & B true
(&I-tc)

The horizontal line, as always, indicates inference, so the truth condition for

conjunction is this inference rule, which is taken to define conjunction. This

rule therefore serves as a justification of the formation rule for conjunction,

A : prop B : prop

A & B : prop

To justify this rule semantically, we have to explain what it means for A & B

to be true under the assumption that we have been given the truth conditions

of both A and B. That is precisely what the rule (&I-tc) above tells us.

In the Brouwer–Heyting–Kolmogorov interpretation, the proposition A & B

is defined by laying down what its canonical proofs look like,

a : pr(A) b : pr(B)

(a, b) : pr(A & B)
(&I-pc)

This is a different explanation from the truth-condition explanation, but you

see that they are related to each other in a precise way: the step from (&I-tc)

to (&I-pc) is the insertion of proof objects, and the step from (&I-pc) to (&I-

tc) is the suppression of proof objects. According to the explanation of truth

that I gave earlier, in order to have the right to assert A true, you must be

in possession of a proof, a, of A. When we take the premisses in (&I-tc) to

be given, there are, therefore, implicitly, proofs a of A and b of B. Those two

proofs can be combined by pairing to form the proof (a, b) of A & B.

I used the term canonical a moment ago, and that is because not every

proof of a conjunction has the form of a pair. There are also proofs obtained

by elimination rules in Gentzen’s sense, whereas the pair corresponds to a proof

obtained by the introduction rule for conjunction. A proposition is defined, not

by telling what an arbitrary proof of it is, but by telling how the canonical proofs

of the proposition are formed. An arbitrary proof of a proposition, A, is then

defined to be a method, or a program, which when executed yields a canonical

proof of A as result—what a canonical proof of A is is just what the definition

of A lays down. The term canonical has the alternative normal, which was used

by Prawitz, for instance, in his treatment of natural deduction. It is just the

standard mathematical terminology that we use, for instance, in speaking of

the Jordan normal, or canonical, form of matrices. The one who introduced

canonical in this connection is Brouwer, in his first paper where he introduced

proof objects, in the proof of the so-called Bar Theorem—he spoke there about

kanonisierte Beweise.

This suffices as an explanation of the type of propositions: a proposition is

defined by laying down its truth conditions or, in more detail, its proof condi-
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tions. Suppose now that we have a proposition A, and we have to explain what

an object of type pr(A) is, which is to say what a proof of A is—but I have just

done that by saying what a canonical proof of A is and then what an arbitrary

proof of A is.

I have yet to explain the third form of judgement,

a : α (x1 : α1, . . . , xn : αn) (3)

of which the form of judgement (P) is an instance. The explanation is that a

judgement of this form means that if we take objects of the argument types,

a1 : α1, . . . , an : αn(a1/x1, . . . , an−1/xn−1)

then

a(a1/x1, . . . , an/xn) : α(a1/x1, . . . , an/xn),

and if we take equal objects of the argument types,

a1 = a′1 : α1, . . . , an = a′n : αn(a1/x1, . . . , an−1/xn−1)

then

a(a1/x1, . . . , an/xn) = a(a′1/x1, . . . , a
′
n/xn) : α(a1/x1, . . . , an/xn)

From this explanation the validity of these two rules is clear:

a : α (x1 : α1, . . . , xn : αn)

a1 : α1 . . . an : αn(a1/x1, . . . , an−1/xn−1)

a(a1/x1, . . . , an/xn) : α(a1/x1, . . . , an/xn)

a : α (x1 : α1, . . . , xn : αn)

a1 = a′1 : α1 . . . an = a′n : αn(a1/x1, . . . , an−1/xn−1)

a(a1/x1, . . . , an/xn) = a(a′1/x1, . . . , a
′
n/xn) : α(a1/x1, . . . , an/xn)

Again we can just as well say that these rules are meaning determining for

the form of judgement which occurs as their major premiss. These are then

elimination rules for that form of judgement, since the judgement in question

occurs as premiss and not as conclusion.

Now we have finally got down to the bottom, because this was the meaning

explanation for the third basic form of judgement of type theory. Building

up successively on that, we reach the consequence form of judgement. This

consequence form is thus not just taken for granted, as it was by Tarski, but I

have provided a detailed semantical explanation of what it means—a semantical
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explanation, moreover, which justifies the rules that hold for it.

The most obvious rule that holds for judgements of the consequence form is

the following:

A true (x1 : α1, . . . , xm : αm, Am+1 true, . . . , An true)

a1 : α1 . . . am : αm(a1, . . . , am−1/xm−1)

Am+1(a1/x1, . . . , am/xm) true

...

An(a1/x1, . . . , am/xm) true

A(a1/x1, . . . , am/xm) true

(R)

This serves as an elimination rule for the consequence form of judgement. Why

is it valid under the interpretation that I have given? We assume that the

premiss judgements have been established, and I have to explain why we have

the right to make the conclusion judgement. According to the explanation of

the consequence form of judgement, what permits us to make the judgement

that is the first premiss of (R) is that we possess a proof object,

a : pr(A) (x1 : α1, . . . , xm : αm, xm+1 : pr(Am+1), . . . , xn : pr(An))

The premisses on the second line provides us with arguments, a1, . . . , am. What

permits us to make the judgement that is the third premiss is that we possess

a proof object,

am+1 : Am+1(a1/xm, . . . , am/xm)

and similarly for the rest of the premisses. From these premisses, we can thus

restore proof objects am+1, . . . , an. Now we have, not only the object a, but

also a1, . . . , am, am+1, . . . , an. Taken together, this gives us a proof object for

the proposition A(a1/x1, . . . , an/xn), namely

a(a1/x1, . . . , an/xn)

by the meaning of the third form of judgement. We therefore have the right

to make the conclusion judgement. The rule (R) is thus justified by restoring

the proof objects: that is how this obvious rule is validated according to the

meaning explanations that I have given here.

Suppose you do not have any proof objects. You still want to explain what

the consequence form of judgement, (Con), means. The obvious explanation is,

of course, that it just means what it has to mean in order for the rule (R) to

be valid. That is to say, without proof objects, the rule (R) becomes meaning

determining for the consequence form of judgement. That is clearly how the

ordinary notion of logical consequence was interpreted before proof objects were

born, which was only in the 1920s. Bolzano, in his treatment of Ableitbarkeit,
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for instance, does not say anything explicitly on this point, but it is clear that

that is how he interprets it. That must also have been the way in which the

notion of formal consequence was interpreted in the 14th century, and it is what

Etchemendy called the substitutional account of logical consequence.
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Tarski’s metamathematical reconstruction of the

notions of truth and consequence

24 February 2012

Today it will be explicitly about Tarski’s work, and that makes it much easier,

in a way, than the previous lectures, although I was then speaking about my

own things. Concerning Tarski semantics I think it is enough, since we all know

it, to summarize it in the following diagram:

⌜“a”⌝ J⌜“a”⌝K (“a”)∗ = a

“a”

Tarski semantics =

term model standard model

We have an expression, “a”, of the object language—I will use the usual

quotation marks to indicate expressions rather than what they mean. An ex-

pression of the object language can be interpreted in many models, and the

basic ones for Tarski semantics are the term model, on the one hand, and the

standard model, on the other hand. For the term model I use the corners, so

⌜“a”⌝ is the interpretation of “a” in the term model, or syntactic model. For

the intended interpretation, the interpretation in the standard model, I will use

the star, so (“a”)∗ is the meaning of the expression “a”. This presupposes, as

Tarski always does, that the object language is an interpreted language, so that

the expressions in the object language have a meaning, an intended meaning.

In general it is enough if (“a”)∗ can be expressed in the metalanguage, but if

the object language is part of the metalanguage, then (“a”)∗ is equal to a.

Tarski semantics is a homomorphism from the term model to the standard

model: it takes ⌜“a”⌝, which Tarski called the structural-descriptive name of

the expression “a” of the object language, but which we nowadays rather think

of as the interpretation of “a” in the term model, and yields J⌜“a”⌝K. Tarski’s

material adequacy condition says just that J⌜“a”⌝K = (“a”)∗. Tarski, of course,

did not describe what he was doing in this way. This is a contemporary way of

describing it, though I am not completely sure to whom it should be attributed—
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maybe Lawvere in the 1970s had something like it.

This pattern is independent of the language we are considering and can, in

particular, be applied to constructive type theory. Recall the form of judgement

α : type (x1 : α1, . . . , xn : αn)

What becomes of this in the term model? Corresponding to it we have the form

of judgement

τ : ⌜type⌝ (⌜x1⌝ : τ1, . . . , ⌜xn⌝ : τn)

I use τ for the entities in the term model that interpret types and call these

entities type symbols, naturally written ⌜type⌝. The context (x1 : α1, . . . , xn :

αn) also has to be interpreted in the term model, and its interpretation is

precisely what we call a signature. The signature (⌜x1⌝ : τ1, . . . , ⌜xn⌝ : τn) says

that the metamathematical variable ⌜x1⌝, which is not a variable any longer,

but a constant, has type symbol τ1, and so on up to ⌜xn⌝, which has type

symbol τn.

Suppose we have objects of the right types to associate with the metamathe-

matical variables, ⌜x1⌝, . . . , ⌜xn⌝. So we have objects

a1 : Jτ1K, . . . , an : JτnK(a1/⌜x1⌝, . . . , an−1/⌜xn−1⌝)

If we have such objects—and I am now formalizing a bit on the metalevel—

then we may form the semantic value of τ , JτK, which is a type under the

metamathematical assignment of a1, . . . , an to the metamathematical variables

⌜x1⌝, . . . , ⌜xn⌝——it is not really an assignment, but an association list that

correlates ⌜x1⌝ with a1, and so on.

τ : ⌜type⌝ (⌜x1⌝ : τ1, . . . , ⌜xn⌝ : τn)

a1 : Jτ1K . . . an : JτnK(a1/⌜x1⌝, . . . , an−1/⌜xn−1⌝)

JτK(a1/⌜x1⌝, . . . , an/⌜xn⌝) : type

Corresponding to the form of judgement

a : α (x1 : α1, . . . , xn : αn)

we have, in the term model, the form of judgement

t : τ (⌜x1⌝ : τ1, . . . , ⌜xn⌝ : τn)

The corresponding rule is this:

t : τ (⌜x1⌝ : τ1, . . . , ⌜xn⌝ : τn)

a1 : Jτ1K . . . an : JτnK(a1/⌜x1⌝, . . . , an−1/⌜xn−1⌝)

JtK(a1/⌜x1⌝, . . . , an/⌜xn⌝) : JτK(a1/⌜x1⌝, . . . , an/⌜xn⌝)
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Tarski’s great achievement is to have properly defined these semantic values

by recursion over the buildup—in this case, it is over the structure of the type

symbols, respectively over the structure of the terms. This I take to be given

now: doing Tarski semantics for type theory. That was the subject of the talk I

gave at the LMPS conference in Florence in 1995, and I just take it for granted

now, because we all know how to do Tarski semantics for any language that we

are given, in particular for type theory.

When the metamathematical variables are assigned the variables themselves,

(x1/⌜x1⌝, . . . , xn/⌜xn⌝), supposing, of course, that we are in a surrounding con-

text where we have introduced the variables x1, . . . , xn of the correct types, then

I will write

JτK(x1/⌜x1⌝, . . . , xn/⌜xn⌝)

simply as JτK, and
JtK(x1/⌜x1⌝, . . . , xn/⌜xn⌝)

as JtK.
What is Tarski’s definition of formal, or logical, consequence? Recall the

logical-consequence form of judgement, the form of assertion that expresses an

ordinary, as I called it, logical, or formal, consequence:

A true (x1 : α1, . . . , xm : αm, Am+1 true, . . . , An true) (Con)

This is the ordinary notion of logical consequence. What is Tarski’s notion?

Instead of the initial context (x1 : α1, . . . , xm : αm) we introduce instead a

signature (⌜x1⌝ : τ, . . . , ⌜xm⌝ : τm). We go from a context to its metamathe-

matical counterpart, which is a signature. And whereas Am+1, . . . , An, A were

propositions in the context (x1 : α1, . . . , xm : αm), so they were propositional

functions, we now have formulas in the signature (⌜x1⌝ : τ, . . . , ⌜xm⌝ : τm),

Fm+1, . . . , Fn, F : ⌜prop⌝ (⌜x1⌝ : τ, . . . , ⌜xm⌝ : τm)

Formulas are what interprets propositions in the term model,

⌜prop⌝ = formula

We can now state the definition. The formula F is a logical consequence in

the sense of Tarski of the formulas Fm+1, . . . , Fn provided

JF K true (x1 : Jτ1K, . . . , xm : JτmK, JFm+1K true, . . . , JFnK true) (Tar)

I am relying here on the abbreviations explained above for when metamathe-

matical variables are assigned the variables themselves, so that I can write,

for instance, JF K instead of JF K(x1/⌜x1⌝, . . . , xm/⌜xm⌝) and JτmK instead of
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JτmK(x1/⌜x1⌝, . . . , xm−1/⌜xm−1⌝).

In (Tar) we have a well-formed assertion, an instance of the form (Con) ob-

tained by inserting the semantical values of the arbitrary formulas Fm+1, . . . ,

Fn, F for the arbitrary propositions Am+1, . . . , An, A. I am in the good position

now that last time I explained what an assertion of the form (Con) means, so it is

something that we have access to, hence I can use it to define logical consequence

in the sense of Tarski. Observe that the ordinary, or pre-metamathematical, no-

tion of logical consequence, as expressed by (Con), is taken for granted here.

Tarski simply presupposed that we all understand what it means for the propo-

sition JF K to be true provided the propositions JFm+1K, . . . , JFnK are true, what-
ever we assign as values to the variables x1, . . . , xm. He was right in this, in a

sense: we have an ordinary notion of logical, or formal, consequence, which, as

I said, is implicit in Aristotle and was quite explicit in the 14th century and in

Bolzano. Tarski relies on that without any further ado here. It is only I who

have been much more careful in providing a precise meaning explanation of the

form of judgement (Con).

We may say, very simply, that Tarski’s notion of logical consequence, which is

a relation between formulas rather than propositions, is obtained by composing

the ordinary notion of logical consequence with Tarski’s semantic evaluation

procedure, indicated by J·K here. Tarski’s achievement is really the semantic

evaluation procedure. Once the semantic evaluation procedure is in place, then

we can, of course, retrace the ordinary notion of logical consequence, expressed

by (Con), from propositions to formulas.

This is the basic thing that I had to say about Tarski’s notion of logical

consequence in relation to the ordinary notion of logical consequence. Maybe

it is illuminating to see what happens when we use it in an example that is as

simple as possible. Let us take the example with two propositional constants,

P and Q, and conjunction, &. From the uninterpreted propositional constants

P and Q we obtain formulas ⌜P⌝ and ⌜Q⌝, and from the proposition P & Q

we obtain the formula ⌜P & Q⌝, which is equal to ⌜P⌝⌜&⌝⌜Q⌝. These are all

formulas in the signature (⌜P⌝ : ⌜prop⌝, ⌜Q⌝ : ⌜prop⌝). In particular,

⌜P & Q⌝ : ⌜prop⌝ (⌜P⌝ : ⌜prop⌝, ⌜Q⌝ : ⌜prop⌝)

Suppose that X and Y are two arbitrary propositions,

X,Y : prop

This is an ordinary assumption: let X and Y be two arbitrary propositions.

Then we can form the semantic value in Tarski’s sense of the formula ⌜P &

Q⌝ under the assignment (X/⌜P⌝, Y/⌜Q⌝), which, if we grind out the Tarski

algorithm, we find to be X & Y , which is a proposition in the context X :
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prop, Y : prop.

J⌜P & Q⌝K(X/⌜P⌝, ⌜Q⌝/Y ) = X & Y : prop (X : prop, Y : prop)

When we do it for P and Q separately we get X, respectively Y .

J⌜P⌝K(X/⌜P⌝, Y/⌜Q⌝) = X : prop (X : prop, Y : prop)

J⌜Q⌝K(X/⌜P⌝, Y/⌜Q⌝) = Y : prop (X : prop, Y : prop)

Inserting all of this into (Tar) we get

X & Y true (X : prop, Y : prop, X true, Y true)

So here m = 2 and n = 4. The upshot is that the formula ⌜P & Q⌝ is a logical

consequence in the sense of Tarski of the formulas ⌜P⌝ and ⌜Q⌝ precisely if

X & Y is an ordinary logical consequence of X and Y—which is, of course,

what we expect.

Now let me consider the special case when both m and n are 0. Then we get

simply that the closed formula F is true in the sense of Tarski precisely if the

proposition JF K is true. Here I have a comment about how wise or unwise it is

to call the semantic value of F , that is JF K, Tr(F ), as Tarski does in the English

translation. If we call the semantic value Tr(F ), then we have two true’s here.

From one point of view, that is disturbing, and from another point of view,

natural. I want to explain in what way it is disturbing and in what way it is

natural.

It is disturbing, of course, to use the same word for two different notions at

the same time. To avoid that difficulty, the simplest way out is not to call JF K
Tr(F ), but to call it Val(F ), the semantic value of F , which is what it is.

There is, however, a justification for calling it Tr(F ), as Tarski did, and the

justification is this. Let me take an analogous example. Instead of formulas, we

consider numbers, and instead of the property of being true in Tarski’s sense,

we consider the property of being odd. The assertion

n is odd

is formalized as

Odd(n) is true

where Odd(n) is defined as (∃x)(n = 2x+ 1). Two notions of odd are involved

here: one is the predicate in the first assertion and the other is the propositional

function that I just defined, whose value for an arbitrary n is true precisely when

n is odd. This is, of course, the standard way in which we proceed, and that is

exactly what Tarski did: the propositional function Tr(F ) reflects the property
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of being true in the sense of Tarski into a proposition that is true if, and only if,

that property holds of the formula in question. This is the logic behind calling

JF K Tr(F ), as Tarski did.

With this I have finished what I had to say about the semantic evaluation

procedure and its use to get Tarski’s notion of logical consequence. In the final

part of these lectures, I would like to compare certain ontological or logical

notions with their formalistic counterparts. In the left column below I write

certain logical, or if you prefer, ontological, concepts and in the right column

their formalistic counterparts:

individual term

proposition formula

proof derivation

truth = provability derivability = existence of

= existence of a proof a derivation

hypothetical proof derivation from assumption formulas

consequence = hypothetical derivability from assumption

provability = existence of formulas = existence of a derivation from

a hypothetical proof assumption formulas

Let this suffice as a list of the most basic concepts that I have considered and

their formalistic counterparts.

The situation in the 1930s was that everybody was heavily syntactically

prejudiced as a result of Hilbert’s step of making the logical symbolism itself

an object of mathematical study. One became preoccupied with these new

combinatorial objects. Nobody then had any problems with the notions on the

right hand side here: on the contrary, that was what everybody was interested

in, because these were new mathematical objects that required investigation.

This preoccupation with the syntactic had a dark side, however, namely that

one felt very shaky about the semantic side, or the ontological side, if you want.

This was precisely the time when Ryle wrote a paper with the famous title

“Are there propositions?”. To a mathematician that is like asking, Are there

complex numbers?, or something like that—a completely absurd question. Of

course, there are numbers. The question, What are they?, that is one thing—

but we could not have the mathematics that we have unless they were. Similarly

in logic, we have, after all, propositional logic, and how could we have that if

there were no propositions? These worries were so strong that the propositional

calculus changed name to the sentential calculus, and one started to speak

about sentences instead of propositions—which shows how troublesome even

the second line in the table above,

proposition formula
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was at the time.

Tarski very cleverly avoided this problem. He defined satisfaction—and of

course, that a certain sequence satisfies a formula, that is expressed in a propo-

sition. Tarski did not say that, however, but managed without saying it. He

simply defined satisfaction directly in ordinary mathematical terms. Hence he

did use propositions, but he did so without offending anyone by speaking about

them.

When we come to the third line of the table,

proof derivation

the situation is much worse than it was with the second line. In the third line

there was a gap, a lacuna, in the logical ontology at the time: there were no

proof objects. There were no mathematical objects that we could sensibly assign

as semantic values to derivations. Well, actually there were, because of Brouwer

and Heyting, but nobody knew about that at the time, because it had not been

sufficiently systematically developed. Moreover, neither in the Vienna Circle

nor in the Polish school, where they were occupied by the relation between the

two sides in the table, did they take intuitionism seriously. The Vienna Circle

was basically determined by Schlick and Carnap, and both followed Hilbert,

with nothing in depth about intuitionism, and as far as I know, it was the same

in the Polish school.

Maybe this is one of the most important points of this series of lectures,

namely the introduction of a proof ontology. The lack of it before is very con-

spicuous. If you think of Bolzano’s logic, which has a very clear architectural

structure and which takes an ontological viewpoint from the start—the main

chapters of his logic are

Vorstellungen an sich

Sätze an sich

Wahrheiten an sich

In the Organon, the first two correspond to the Categories and the De interpre-

tatione. The third is a novelty, where we get the objective notion of truth, which

applies to Sätze and sich. These are the three main chapters of Bolzano’s logic.

The upshot of my discussion is that this is too poor an ontology, because it lacks

something that we should be able to assign as semantic values to derivations.

There would have been needed a chapter

Beweise an sich

Although Bolzano calls the notion of formal consequence, or logical consequence,

Ableitbarkeit, which is to say deducibility, there is no such chapter in his logic:

he has deducibility without deductions. That is the same situation as we have
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had in the 1930s: we had a semantic notion of consequence, but no ontological

notion of hypothetical proof.

If we look back now on these three lectures, the main points, in my eyes, are

the following.

• The priority of epistemology over ontology, more specifically of inference

over consequence.

Remember why: when we explain the notion of consequence semantically, the

notion of inference had to be in place already.

• The priority of the ordinary notion of logical consequence over Tarski’s

metamathematical reconstruction of it.

That is because the ordinary notion occurs in the definition of Tarski’s notion

of logical consequence.

• The introduction of the notion of proof object.

Proof objects are appealed to in the explanation of the ordinary notion of logical

consequence.

Let me end by elaborating this last point a little bit. The notion of proof

object is distinct both from the epistemological notion of demonstration and

from the metamathematical notion of formal derivation, or proof term, as we

often call them nowadays. You may look upon it as follows.

demonstrations proof objects

formalistic

Hilbert (1922, 23)

intuitionistic

Brouwer (1924, 27)

Heyting (1930, 31)

You have the notion of demonstration—a demonstration is a chain of immediate

inferences, if you remember from the first lecture—and distinct from that, the

notion of proof object. Proof objects, to my mind, were introduced first by

Hilbert, but he understood them formalistically. This was in his papers that

inaugurated proof theory: the “Neubegründung” paper from 1922 and the more

sober Mathematische Annalen paper from 1923. I take it that Brouwer read

everything that Hilbert wrote of a foundational character at the time, so I think

we can take it for granted that these papers by Hilbert were read by Brouwer

as soon as they appeared. Only a year later, Brouwer had, with his creative
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mind, fruitfully rethought that idea and put it to use in his own work. This

is the first appearance of intuitionistic proof objects, namely in Brouwer’s first

proof of the Bar Theorem from 1924 and then in the more well-known proof

from 1927—later, they were very fruitfully used by Heyting in his explanations

of the meanings of the logical operations from 1930 and 1931. I cannot find

references further back to anything that should be reminiscent of proof objects,

so it is in 1920s that this proof ontology, proofs as objects, came into being.

The trouble with the formalistic conception of proof objects is what Brouwer

immediately noticed. He was a relentless critic of Hilbertian formalism, because

he thought that it is not the linguistic forms, but the meaning that is the

important thing, so we should have the semantic counterpart to the formalistic

notions. That fits, of course, with the discovery in the 1930s of the discrepancy

between truth and derivability, the left and the right column in the fourth line

of the table above,

truth derivability

It is astonishing that it has taken such a long time to realize that once we

introduce the intuitionistic proof objects rather than the formalistic ones, the

formal derivations, then we reestablish the equation between truth and prov-

ability: truth is distinct from derivability, but once we introduce proof objects,

the equality, now between truth and provability, gets reestablished,

truth = provability

In Heyting’s work, the proof objects enter only in the interpretation of the

logic. The step taken in intuitionistic type theory was to introduce—if these

proof objects are so important for the interpretation, why should they not be

there in the formal system itself? Once you put them in, you arrive at type

theory.
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