ARE RULES VALID IN VIRTUE OF MEANING OR IS
MEANING DETERMINED BY RULES?

PER MARTIN-LOF

NoTE. This lecture was given by Per Martin-Lof on 21 June 2002 as an in-
vited lecture at Logica ’02, held at the Zahradky Castle in Czechia. The
transcription, made by Ansten Klev, is based on a video recording preserved
on a CD-ROM that was discovered in the winter of 2025. The video recording
was made by David Gottlich.

It is a traditional view, going back to Plato and Aristotle, that axioms and rules
of inference are valid in virtue of the concepts they contain, or in a more modern
way of expressing it, in terms of the meaning of the terms that we bring into their
formulation. The view is roughly as follows. We have the capacity for grasping
concepts, the nous. With our nous, we grasp concepts, and with the same capacity,
also the axioms, particularly the axioms of mathematics, become evident, namely
evident in virtue of how the concepts that they contain have been defined. From
the axioms the discursive faculty takes over, the dianoia, and then it is the business
of the mathematicians: that is precisely what the mathematicians are good at,
deriving consequences from the axioms. But the justification of the axioms was not
thought to be the business of the mathematicians. Rather, the justification of the
axioms belonged to dialectics, so it was a properly philosophical task.

This traditional view is to be contrasted with the modern view, and I think it is
no doubt that it is Wittgenstein who is to be associated, above all, with this modern
view. We could call it the functionalist view or operational view, to use two of the
terms that were very popular around 1930, when this modern view broke through.
The best expression that I have found of this modern view is not from Wittgenstein
himself, but from Moore’s reports of Wittgenstein’s lectures of 1930-33. He says
that, according to Wittgenstein, the meaning of any single word in a language is
defined, constituted, determined, or fixed—Wittgenstein used all four expressions
in different places—by the grammatical rules with which it is used in that language,
and the meaning of a word is its place in a grammatical system. Alberto Coffa, in
his stimulating book The Semantic Tradition from Kant to Carnap, has referred
to this transition, from the traditional view to the Wittgensteinian view, as a new
Copernican turn, or in a second place, as the Copernican turn in semantics, alluding,
of course, to Kant.

The contrast that I have presented here is, of course, strongly correlated to the
contrast between two different conceptions of meaning, namely the conception of
meaning as object versus the conception of meaning as use. The traditional view

is correlated with the conception of meaning as objects. We have concepts, in the
1



2 PER MARTIN-LOF

traditional terminology, or meanings, in modern terminology, which are objects of
a conceptual realm—world of ideas, if you want—and then we have words which
express those concepts. The word gets its meaning by being tied to the concept
that it expresses. This is the essentially Platonic view. A paradigmatic example of
this view is Bolzano’s, in the 19th century.

Wittgenstein’s contrasting view is that meaning is use. Meaning as use is, no
doubt, the most well-known formulation of the later Wittgenstein’s view, but I
would like to be more precise here. Use is always use for a certain purpose, so I
would like to rephrase meaning as use in the following way. Each linguistic unit,
linguistic atom, has a very particular purpose, and the meaning of that linguistic
unit is the way in which it fulfils its purpose: meaning is mode of operation, or mode
of functioning, for the particular purpose that it has. Explaining what the purpose
of a linguistic unit is, is to explain what its syntactic category, or grammatical
category, is. But there is not only the category: there is also the object, and the
object—the meaning—is characterized by the way in which it fulfils the purpose.

These are two different conceptions of meaning—mno doubt about that. But it
would be very strange if we could not make good sense of both, because, after
all, almost all the history has been tied to the old-fashioned view of meaning as
object, whereas meaning as mode of operation is a relatively new insight. The way
in which these two views can be reconciled is this, and this is something which
underlies all of my own work: the meaning in the objective sense, the meaning as
object, is simply identified with the full, that is to say, the meaningful expression,
to be contrasted with the empty expression, the expression divested of sense. This
distinction between the empty expression, its pure shape or form, as contrasted with
the full, or meaningful, expression has been made, perhaps for the first time, by
Husserl: Leerausdruck contra voller Ausdruck. So the way to reconcile these views
is simply to identify the meaning as object with the full expression, which is to say
in functionalist terms, the functioning expression, or in terms of use, the expression
in its use, or the expression considered together with its mode of employment.

Now I would like throw some light on the original question: do we have meanings
first, and then rules valid in virtue of these meanings, or is it the other way around,
that it is the system of rules that is the starting point, and then the meanings
somehow come out of the system of rules? To this end, I will have to sketch, outline
in some way, the informal semantics, or meaning theory, that I have developed for
constructive type theory. I am using the term informal semantics, or meaning
theory, rather than just semantics, since the term semantics has been so much tied
to Tarski semantics, or formal semantics, that we need some word that contrasts
sufficiently well with it. Since formal semantics has been a popular term from
Carnap and onward, why not informal semantics, or intuitive semantics, or if you
want, meaning theory, which is the term generally preferred by Dummett.

What does this meaning theory look like? I will first have to specify the main
ingredients of the system as such, and as with every deductive system, you have to
start by displaying the forms of judgement on which it is based. In this case, the



LOGICA ’02 LECTURE 3

forms of judgement are the following—there are four of them:

(1) A:type (x1: A1, ... xn Ay)
(2) A=DB:type (x1:A1,...,2,: Ap)
(3) a:A (x1:A1,... 2, Ay)
(4) a=b:A (x1:A1,...,2n: Ap)

The first one says that A is a type in a context formed by a variable z; ranging over
a previously introduced type Aj, et cetera, x,, ranging over a previously introduced
type A,,. Then (2) is the corresponding equality judgement, which says that A and
B are equal types in a context of that form. The third form of judgement says that
a is an object of type A, again, in general, in such a context, and (4) that a and b
are equal objects of type A in such a context.

These are the four forms of judgement, and they have certain presuppositions,
which are almost obvious. If you read (1) as saying that A is a type provided that
x1 ranges over the type Aj, et cetera, of course this judgement presupposes that
A; is a type, and then that As is a type which may possibly depend on A;, and
so on, that A, is a type, which may possibly depend on the types A; up to A,_1.
For the second form of judgement, it is clear that I cannot say that A and B are
equal types unless they are types to begin with, so this second form of judgement
presupposes the first form of judgement for both A and B. When we come to (3),
if we say that a is an object of type A, of course it is presupposed that A is a
type in the given context, which means that we are presupposing (1). Finally, if we
say that a and b are equal objects of type A in this context, then, first of all, we
are presupposing that A is a type in this context, and then that both a and b are
objects of type A in that context.

Once the forms of judgement have been displayed, the next thing you have to do
is to explain what they mean. This proceeds by induction on the length, n, of the
context. When n = 0 we have a judgement of the form A : type. What must you
know in order to have the right to make the judgement A : type? Well, you must
know what an object of the type A is—that is the criterion of application—and
also what it means for objects of the type A to be equal. That explains the notion
of type.

Now we have to deal with the case n > 0, when the context is non-empty. Then

a judgement of the form (1) means that if
a1 : A, an s Ap(ar /oy, an—1/Tp—1)

then
Alar/x1, ... an/zn) : type
Since I have already explained what a type is, this explanation makes perfectly

good sense. In addition it must also be the case that if

a; =by: A1,...,an = by : An(al/xlwuaanfl/xnfl)



4 PER MARTIN-LOF

then
Alar/x1, ... an/xn) = A(b1 /21, ..., bn/2y) : type
I will in general try to avoid stressing all these equality rules in the following.
It is clear from this explanation of what a family of types is that the following
rule is valid:
A:type (x1: A1, ... 20 Ay) ay: Al .. apn s Anar/ze, .o an—1/Tn—1)
A(ar/x1,...,an/xys) : type

Why is the rule valid? Because the first premiss means precisely

Alar/z1,...,an/zy) : type

provided
ay: A,y ..y apn s Anar/ze, .o an—1/Tn—1)

You see that I started in the traditional way by first explaining what a family of
types is and then justifying the rule in terms of that explanation. I could, however,
equally well have written up the rule first and then said that you can read the
meaning of (1) off the rule, namely that you charge (1) with the meaning that is
necessary to ensure the validity of the rule. In that sense, you can say that the
meaning of the form of judgement (1) is determined by this particular rule together
with the corresponding equality rule: they are the meaning determining rules for
the form of judgement (1).

When we come to the second form of judgement, we first take the case when
n = 0, that is, we explain what it means for two types to be equal. What does it
mean for two types to be equal? They are equal if an object of the one type is also
an object of the other type, and equal objects of the one type are equal objects of
the other type, and vice versa. It is then obvious that the following rule is valid:

a:A A= B :type
a:B
This is valid because I have charged the judgement A = B : type with the meaning

necessary to ensure the validity of the rule. Ryle has a nice way of expressing this.
In his terminology, I could say that the judgement A = B : type is an inference
licence, or an inference ticket, which licenses you to infer a : B from a : A.

Then we come to the third form of judgement. When n = 0 we already know
what a judgement of the form (3) means, since such a judgement has the presup-
position that A is a type, and once it is a type, we know what an object of that
type is. It depends, of course, on the type what it is, but it must be fixed what an
object of the type A is, and a : A says precisely that a is an object of type A, and
we know what that means because of the presupposition.

In the case n > 0, when we have variables, then a judgement of the form (3)
means that if

ay: A,y an s Anar/zy, .o an—1/Tn—1)
then
alar/z1,...,an/Ty) : Alar/x1,...,an/xy,) : type



LOGICA ’02 LECTURE 5

Again, either I can phrase it in this traditional way, explaining the meaning first,
and then the rule becomes valid, or I can say that this rule is meaning determining
for the form of judgement (3). The treatment of the fourth form of judgement is
similar.

These four forms of judgement are forms of analytical judgement. This is re-
flected in the fact that it can be checked by a computer whether a judgement of any
of these forms is correct or not. This is the type-checking algorithm that underlies
all computer systems based on type theory that are running at the moment. They
can be checked because all the information that we need in order to convince our-
selves of such a judgement is there, in it. No information is missing that we might
have to search for. That is why it is appropriate to call them analytic. They are
valid entirely in virtue of the meanings of the constants that occur in them.

In a synthetic judgement, by contrast, you do not say that a is an object of type
A, but just that A has existence,

A exists,

which means, of course, that there is an object of that type. (I am pleased by the
fact that Bolzano was the first to consider this combination.) A judgement of this
form can be made in a context that consists, not only of variable declarations, but

also of assumptions,
(Exists) A exists (x1: A1,..., 2, 1 Ay, Aptq exists, ..., Ay, exists)

What does such a judgement mean? A judgement of this form is just an abbreviated

way of saying that we have constructed a function
a:A (x1: A1, Ty Apy Tpg1 f Apgty oo T 2 A

The object a may depend on all of these variables, x1,...,Z,,, not only the first
ones, x1,...,ZT,. If nothing depends on the variables from x,,1 onwards, which
means that none of the types A,41,..., A4, nor A, depends on the preceding vari-
ables, then you can abbreviate the latter judgement by (Exists). You are, so to
say, fed up by writing out the construction a: you are just telling that there is
such a construction. It is an incomplete judgement, or a judgement abstract, in
a terminology that was used in the Hilbert school in the 1920s, and which Kleene
changed to incomplete communcation. A judgement of the form (Exists) is an
incomplete communication that the object a has been found. The judgement (Ex-
ists) is properly called synthetic because, of course, you cannot decide whether it is
correct or not. The a has to be found, it has to be constructed, and that requires
inventiveness.

This finishes the explanations of the basic forms of judgement, and now we come
to at least some rules. Let us begin with the rules of type formation. The rules of
type formation are a generalization of Church’s rules of type formation in his “A

formulation of the simple theory of types” from 1940. We have as the first axiom

set : type



6 PER MARTIN-LOF

Now I will immediately have to say something about sets. I am going to use the word
set, not in the sense of Zermelo—Fraenkel set theory—that is rather an iterative set—
but I am going to use set for quantificational domain, or individual domain. I am,
moreover, going to take for granted—mnow that 33 years have passed—the Curry—
Howard correspondence, or Curry—Howard isomorphism, between propositions and

sets: propositions and sets are simply identified,
prop = set : type

This means that the Cartesian product operation on sets is identified with the
conjunction operation on propositions, the disjoint union operation is identified
with disjunction, and the Cartesian product of a family of sets is identified with
the universal quantifier, et cetera. I assume that most you know about this very
important idea, which is basic to all present versions of constructive type theory.
This is the first rule of type formation. The second rule is
A :set A : prop
element(A) : type proof(A) : type

If we have a set, or proposition, A, then we may form the type, element(A), of its
elements, or if we use the logical reading, it will be the type, proof(A), of proofs
of the proposition A. It is too tedious to write out element(A) or proof(A), so in
practice one writes A here: any set is also a type.

Finally we have the rule for forming function types.

x: A
A : type B : type
(x: A)B : type

If A is a type, and if B is a type depending on a variable x ranging over A—I
am using natural deduction style—then we may form the dependent function type
(x: A)B.

In what way does this generalize Church’s rules? Well, the type prop, of propo-
sitions, is Church’s 0. Church’s other ground type was the type ¢ of individuals.
The characteristic thing of constructive type theory is that we have many, many
individual domains, and they are built up in the theory itself. To compare with
Church, you could call element(A), if you want, t(A), that is, for each set A, there
is a type of individuals ¢(A4), namely the type of elements belonging to that set.
Because of this rule, you will have types depending on variables, and since B is
allowed to depend on a variable x ranging over A, the function type (x : A)B
is called the dependent function type. This contains Church’s function type as a
special case. In Schiitte’s notation, Church’s rule of function type formation is

A : type B : type
(A)B : type
When B depends vacuously on A, you may define (A)B as (z : A)B. So Church’s

type structure is embedded in this dependent type structure.

Now I am a bit ahead with the formalities—ahead of the semantics, and this

is always the case: you have to write up something in order to have something to



LOGICA ’02 LECTURE 7

explain. According to my official explanation of what a type is, corresponding to
the axiom set : type there has to be an explanation of what a set is, as well as an
explanation of what it is for two sets to be equal.

What is a set? A set, on this conception, is defined by laying down the rules
for forming its primitive, or canonical, elements, as well as the rules for forming
equal primitive, or canonical, elements—I will forget about the equality part here,

as usual. I am using both expressions: primitive and canonical,

primitive defined

= canonical = non-canonical

This distinction is necessary, because, if you think of the natural numbers, for
instance, not only 0, s(0), et cetera, are natural numbers, but also 2 + 2 and 101°,
which are not directly generated by the first two Peano axioms. They are natural
numbers because they evaluate either to 0 or to something of successor form.

So the natural numbers is taken to be defined by the first two Peano axioms,

) n:N
0:N s(n): N
The Cartesian product of two sets, A and B, is taken to be defined by the rule
a:A b:B
(a,b) : A x B

If a is an element of A and b is an element of B, then (a, b) is a canonical element of
A x B—that defines the Cartesian product. If we call any such rule an introduction
rule for the set-forming operation in question, or under the logical interpretation,
the logical operation in question, then you see that Getnzen’s idea, contained in a
single sentence in his 1934 paper, that the logical constants are, so to speak, defined
by their introduction rules, is contained in the meaning theory here and generalized
from propositions to sets: a set is defined by its introduction rules.

What I have said here is correct, strictly speaking, only of primitive, or canonical
sets. There may also be defined, or non-canonical sets, and there the explanation
is easier: a defined, or non-canonical set, is a method, or program which yields as
result a canonical set.

This explains what a set is. I also have to lay down the equality criterion: what
does it mean for two sets to be equal? I could say, just as I said for types before,
that two sets are equal just in case an element of the one set is also an element
of the other, and vice versa, and similarly for equal elements, namely that equal
elements of the one set are also equal elements of the other set, and vice versa.
Then the following rule is valid:

A= B :set
element(A) = element(B) : type

But I could equally well say that this rule is meaning determining for the form
of judgement A = B : set, or that a judgement of this form is a license to infer
element(A) = element(B) : type.

Now I have explained the axiom set : type. Let me drop the explanation of what

an element of a set is, because that is obvious from the explanation of what a set



8 PER MARTIN-LOF

is, but let us look at the rule for forming function types,

x: A
A : type B : type
(z: A)B : type

Suppose we know the premisses here. What do we have to know in order to have
the right to make the judgement (x : A)B : type? We must know what an object
of that type is as well as what it is for two objects of that type to be equal.

What is an object of type (x : A)B? Well, it is something, f, which when applied
to an object, a, of type A, yields as result an object, f(a), of type Bla/z], and when
applied to equal objects, a and b, of type A, yields as result equal objects, f(a)
and f(b), of type Bla/x]. With that explanation, it is clear that these two rules
are valid:

f:(x:A)B a:A f:(x:A)B a=b:A
7(@): Bla/a] 7(@) = J(b) : Bla/a]
Again, I could equally well write up the rules first, and then say that these rules

are meaning determining for the form of judgement f : (z: A)B.

I also have to give the criterion of identity—I have to explain when f is equal to
g. That they are equal objects of type (x : A)B means that, when applied to an
object a : A, they yield equal results, f(a) and g(a), of type Bla/x]. The following

rule is therefore valid:
f=g:(x:AB a:A

fla) = g(a) : Bla/x]
But I could also say that this rule is meaning determining for the form of judgement
f=g:(x:A)B, and therefore the rule is valid by fiat.

Owing to time limitations, I will not be able to give more rules here. After

these general rules, what you come to is the axiom that N is a set, namely the set
of natural numbers, and you give the introduction rules for it, which are the first
two Peano axioms, and then you give the corresponding elimination rule, which
introduces the recursion operator, if you take the set-theoretic interpretation, or in
the logical interpretation, the principle of mathematical induction. This recursion
operator is defined by its recursion equations, which say what you get when you
put in the argument 0 and what you get when you put in an argument of successor
form. Now Gentzen’s dictum that a proposition is defined by its introduction rule is
complemented by the principle that an eliminatory operation, an eliminator, if you
want, is defined by its associated equality rule, or computation rule. All the other
meaning explanations that I have given previously here are also not contained in the
original Gentzen explanation, which was concerned only with what a proposition
is.

Instead of giving more rules now, let me return to the original question: are rules
valid in virtue or meaning, or is meaning determined by rules? This is a question
about the order of priority between meanings and rules: is it meanings first, and
then rules valid in virtue of them, or is it the other way around? After what I have
said here, I hope it is not difficult for you to see that there is no conflict between

these two views that I started by contrasting. Are rules valid in virtue of meaning?



LOGICA ’02 LECTURE 9

Of course, yes, all the time here you see that rules are valid because of the way I
have explained the meaning of the terms involved. Is meaning determined by rules?
Yes, all the time. I can rephrase the meaning explanation for a form of judgement
as saying that its meaning is determined by a particular rule.

So there is no conflict between these two views. They are fully compatible with
each other. Under more extreme interpretations, to the one side or the other side,
they are incompatible. If you take the first question, which was meant to refer
to the traditional view—there is an extreme form of the traditional view, namely
that we have the realm of concepts, or meanings, which is there first, and then we
come with language and give meaning to our words by associating each word with
a pre-existing concept. That is the Platonic view. This view has a well-known
problem, namely if we are to know the meanings first, then how do we get to know
them? We are supposed to grasp meanings with our nous—that is fine enough, but
how do we get to grasp them? This problem is not, to my mind, to be solved in a
comprehensible way by referring to innate ideas or anything like that. That is not
a comprehensible position.

So, how do we get into this conceptual realm, say in the case of mathematics?
We are not born with these type-theoretical ideas, so how do we get into this world?
Clearly, by training. We train ourselves in using this language with all its rules,
and once we have mastered the language, we know these concepts.

It is the virtue of the second position that it makes it comprehensible how we
get to know concepts. Does not this speak in favour of the second position, that we
have the system of rules first, the language first, and then meaning is determined
by rules? One would like to say that, but as a matter of fact, this very power-
ful idea—+functionalist, or operationalist, if you want—about meanings, originating
above all from Wittgenstein, unfortunately leads almost immediately to conven-
tionalism. You might interpret the dictum that meaning is determined by rules in
the conventionalist fashion that we just write up any system of rules—that fixes the
game, and then the meanings of the symbols are just the way that they are moved
in that game. This is outspokenly so in Carnap’s Logische Syntaz der Sprache, in
the section on conventionalism. We are free to fix any system of rules we want, and
the symbols get their meanings from the way they are moved in this system.

We must remember that conventionalism was inspired by mathematical formal-
ism, hence when we apply conventionalism to mathematics, we obtain just formal-
ism. But that is not a good philosophy of mathematics, and we can see now what is
wrong. There is something right in the idea that meaning is determined by rules. It
is, however, not determined in this facile way, that we just write down any system
of rules that we want and automatically get meaning. Instead, for each constant,
we have to point out precisely which rule is meaning determining for it. That is
what I have done here for some of the constants of constructive type theory.

The analogy that was used at the time when conventionalism, or formalism, broke
through, the comparison with chess, is good for explaining the formal character of
the system: you give precise rules, and then you can move the pieces. It is, however,

not a good analogy to explain the semantical side of language. A much better



10 PER MARTIN-LOF

comparison is a complicated machinery, or a complicated system. This machinery
consists of many little parts, each of which has a very specific purpose, and fulfils
that purpose in a particular way. Explaining the way in which it fulfils its purpose
is, precisely, explaining its meaning.

In a more traditionally philosophical terminology, one could say that the con-
ceptual realm, the world of ideas, the kosmos noeétos, is a system of interrelated
or interlocking parts, and what a meaning theory does is to explain in teleological
terms—it is purpose that is involved here—how that system works. Hence you may
say that syntax and semantics, done in this way, give a theory of constitution for
the conceptual realm.



