
SETS, TYPES AND CATEGORIES

PER MARTIN-LÖF

Note. This lecture was delivered by Per Martin-Löf at Leiden University on

6 February 2004. It was part of a symposium, Philosophy of Constructive

Type Theory, held in order to mark the award of an honorary doctorate to

its author. Göran Sundholm taped the lecture and arranged funds to have it

transcribed by Aziz Abdalli, and also roughly edited the first transcript. The

present version was prepared by Ansten Klev.

Types were introduced into logic by Russell in his attempt at coming to grips

with the Russell Paradox. Originally that was in 1903, in the second appendix to

the Principles of Mathematics, Appendix B, which bears the title “The doctrine of

types”. There he introduced a definition of type, which reads as follows:

Every propositional function φ(x)—so it is contended—has, in addi-

tion to its range of truth, a range of significance, i.e. a range within

which x must lie if φ(x) is to be a proposition at all, whether true

or false. This is the first point of the theory of types ; the second

point is that ranges of significance form types. . .

Here we have, for the first time, Russell’s attempt at a definition of what a type

is, namely, that a type is the range of significance of a propositional function, and

significance means of course, in this connection, meaningfulness. A type is thus the

totality of arguments for which a propositional function is significant, or meaningful.

The range of truth of a propositional function, φ(x), could be denoted

x̂φ(x)

This is the set of arguments for which φ(x) is true. Russell saw that this is not

enough—as if x could range over anything whatsoever. We have to be careful

with what x ranges over, because φ(x) need not be meaningful for any argument

whatsoever. So we need to introduce something more here, namely the domain of

the propositional function. This then is what Russell called a type. His formulation

was that a type is the range of significance of a propositional function.

What particular types did Russell have in mind? First of all, there was the type

of individuals, or terms as he said, and then, above that ground type of individuals,

he had classes of individuals, classes of classes of individuals, and so on up to any

finite level. So that was the first hierarchy of types—well, I will qualify that in

a moment. Then Russell said that, outside this hierarchy, there is the type of

propositions—if propositions can form a type, which he had grave doubts about.

That he had doubts about that is clear from the fact that, if a type is defined

in this way, as the range of significance of a propositional function, why do not
1



2 PER MARTIN-LÖF

all propositions then form a type? You certainly have the function which takes

any proposition into itself, the identity function on propositions. That is clearly a

propositional function in the sense that it has propositions as values, and what is its

domain? Well, it clearly consists of all propositions. So if the range of significance

of this particular propositional function consists of all propositions, they ought to

form a type according to his definition of what a type is. On the other hand,

Russell had grave doubts whether propositions form a type. He ends in fact this

Appendix B by saying,

The totality of all logical objects, or of all propositions, involves, it

would seem, a fundamental logical difficulty.

He says that after having derived his second paradox—much less known than the

first—from the idea that propositions form a type.

It was the quantification over propositions that Russell was rightly worried

about: whether the impredicativity involved in quantification over propositions

really makes good sense. Applying universal quantification to the particular choice

of φ(x) that I mentioned, you get the proposition “for all x, x” where x ranges over

propositions, and Russell thought that that hardly makes good sense. This suggests

that what Russell really had in mind when he said that a type is the range of signifi-

cance of a propositional function was that a type is what the quantifiers range over.

Indeed, if we say instead that a type is an individual domain, or a quantificational

domain, then Russell’s doubts about forming a type of propositions make perfectly

good sense.

When I said that it was Russell who introduced types into logic, maybe I ought

to have said that he introduced the term type into logic, because, surely there was

something in the way of types already before Russell. I am thinking then in partic-

ular of the universe of discourse: the universe of discourse of the Boolean tradition

is very much like what we now call an individual domain, or a quantificational

domain. That is clear enough from how we nowadays represent the Aristotelian

forms of judgment. For instance, when we represent “all A are B” as “for all x in

the universe of discourse, x is A implies x is B”, then it is clear that the A and the

B have to be properties, or classes, of individuals in the universe discourse that we

quantify over. So the universe of discourse is the quantificational domain, and is to

be identified with what we call types nowadays.

Secondly, before Russell there was Frege’s hierarchy of Stufen, of levels of func-

tions. Frege had this idea, which goes against type theory, that we have an all-

embracing domain of all objects at the bottom, and then over that domain of all

objects we have functions, and functions of functions, etc., up to any arbitrarily high

finite level. This, to my mind, is really the first place where you have something like

what we nowadays call a hierarchy of types. This was already in the Grundgesetze,

published in 1893, so it was ten years before Russell had his hierarchy of classes of

individuals and classes of classes of individuals.

These, then, seem to me to be the two basic prototypes for types before Russell

introduced the term in 1903.



SETS, TYPES AND CATEGORIES 3

Russell introduced types in order to deal with the paradox, but for some reason

unknown to me, he seems to have abandoned type theory as the solution and instead

started to work on various other theories that he called the zigzag theory and the

theory of limitation of size, and there was also the no-classes theory. In 1906 he is

still writing about those three possible solutions, but soon after that he must have

reverted to his first attempt, to the theory of types, because already in 1908, his

type-theory paper, which sets out all his basic ideas about types, was published

under the title “Mathematical logic as based on the theory of types”.

The essential novelty in 1908 as compared with the Appendix in 1903 is that

now the ramified types make their appearance. Ramified types are Russell’s answer

to his doubt as to whether all propositions form a type that you can meaningfully

quantify over. He made up his mind in the negative and said: that does not make

sense, we have to divide propositions into orders and similarly divide classes into

classes of different orders. The propositions or classes or relations of a fixed order—

that is the totality over which it does make sense to quantify.

We thus get the ramified theory of types, which then became the basic system

of Principia. And we know what the problem was: Russell could not do his math-

ematics in the ramified theory of types, so he introduced the infamous axiom of

reducibility, and it was he himself who was totally dissatisfied with it, as he says in

the preface to the second edition of Principia from 1925. It is not the sort of axiom

with which one can rest content. It has a purely pragmatic justification, namely

that using this axiom, which had no justification, one can derive the mathematics

that one needs to derive and that cannot be derived without it.

This is essentially how type theory was left by Russell, and this is the first phase,

I would say, in the development of type theory: the phase of the ramified theory

of types. Then came the second phase, which is the transition from the ramified

theory of types to the simple theory of types, a transition that takes place gradually

in the 1920s. The proposal of Chwistek in the early 1920s and Ramsey in 1926 was

simply to do away with the ramification, do away with the orders and just retain the

types. That means that now the type of propositions was accepted. Propositions

were accepted as forming a type, and propositional functions over a given domain

also form a type, and so on—we know, of course, the simple type hierarchy.

Something then had to be said about the interpretation. After all, Russell’s

worries were not fancies. They were real worries. If the hierarchy of simple types,

or the very notion of simple types, was to be accepted, then something had to be

said about their interpretation. That is Ramsey’s contribution here. I know next

to nothing exactly about what Chwistek did, and I would very much like to know

from some expert, but at least I do not think that he contributed anything to the

interpretation of the simple theory of types. It is Ramsey who for the first time

proposed what we nowadays would say, namely that there is no problem with the

type of propositions, because we just interpret propositions as truth values. The

type of propositions has two elements and clearly forms a totality over which we

can quantify.



4 PER MARTIN-LÖF

That is the current interpretation, and that shifts the problem that Russell had

to another place—or maybe I should not say that, but rather say that the problem

about the axiom of reducibility is then shifted to the problem of the validity of the

comprehension axiom in the simple theory of types: what right do we have to say

that an arbitrarily complicated formula—containing free variables, quantification

over all propositions or properties or relations and so on—denotes, or defines, a

truth function of its arguments? That is the fundamental problem, and it is the

analogue of the problem of the axiom of reducibility for the simple theory of types.

In any event, the simple theory of types was accepted by the logical community,

and the next step after Ramsey was the step of introducing an explicit notation.

In Principia you certainly had types, but there was no notation for types. Each

variable had a type, so to say implicitly: an implicit type that was never shown

explicitly. This is why the passages in the Tractatus about types are written the

way they are: the signs for types are somehow the variables, because the variables

implicitly carry types, but there is no explicit notation for types. It was therefore

a very important step in the development of type theory to introduce an explicit

notation for types. That comes, as far as I know, for the first time in Carnap’s

Abriss der Logistik from 1929, where he introduces one of the two simple type

hierarchies that we are familiar with, namely the one that starts with a ground

type 0 of individuals and then, given previously introduced types

α1, . . . , αn,

one forms the type

(α1, . . . , αn)

which is the type of n-ary relations over α1, . . . , αn. This was the type hierarchy

for which Carnap for the first time introduced an explicit notation.

You can also follow the transition from the ramified theory of types to the simple

theory of types very clearly by looking at the various editions of Hilbert–Ackermann.

The first edition is from 1928, so it is before Carnap, which means that these

notations for types are not yet there. Instead there is a description of the ramified

theory of types of Principia. In the second edition, however, which is ten years later,

from 1938, the ramified theory has been toned down—is more or less absent—and

has been replaced by the simple theory of types with this new explicit notation for

the higher types that was introduced by Carnap.

After Carnap, a new impetus comes from Ajdukiewicz in his groundbreaking

paper on categorial grammar from 1935. He also introduced an explicit notation

for types, different from Carnap’s. The differences are not only notational—not so

great perhaps, but worth noticing. First of all, instead of having a single ground

type, Ajdukiewicz has two, namely n and s, where n stands for name and s stands

for sentence. That immediately shows something. When we say that 0 is the type of

individuals and that (α1, . . . , αn) is the type of ordinary relations of the arguments

of the appropriate types, we are using the usual objective way of speaking that is

characteristic of mathematics: individuals and relations are mathematical objects.

Ajdukiewicz, on the other hand, did not use the term type. He rather used the



SETS, TYPES AND CATEGORIES 5

term meaning category, Bedeutungskategorie, that had been introduced by Husserl

and transmitted by Leśniewski. Moreover, n was the category of names, and s

was the category of sentences, which means that they were thought of as linguistic

categories, meaning categories, or semantic categories—to use the slight change in

the term contributed by Leśniewski as compared with Husserl.

The final piece in the development of the simple theory of types from the ramified

theory is Church’s paper from 1940, where he gives his formulation of the simple

theory of types using the lambda notation for functional abstraction. Church’s

types were exactly like Ajdukiewicz’s types, with two ground types that Church

called ι and o, of individuals and propositions respectively. Again you notice the

difference, because Church certainly thought about individuals and propositions

and functions in an objective manner, contrary to Ajdukiewicz, who spoke in a

linguistic manner.

This will have to end the description of the second phase in the development of

type theory, which is when the simple theory of types crystallized. Then I come to

the third phase, in which I have been involved, beginning in 1970. There were three

papers of mine, in 1971, ’72 and ’73. The first was submitted to Acta Mathematica,

but withdrawn after Girard’s discovery of the paradox that now bears his name.

The ’72 version would eventually be published in 1998, but the ’73 paper was

published in due time in the proceedings of the Bristol symposium at which the

paper was first presented. If I look back on what I then wrote—which I have not

done for a long time—I am immediately struck by certain things which have been an

improvement in understanding in these 30 years. In 1971, I wrote as my attempted

definition of what a type is, or the fixing of the meaning of the term type,

Every mathematical object is of a certain kind or type which is

immediately associated with the object in question.

That was the first sentence. Then comes a second sentence,

A type is defined by prescribing how we are allowed to construct

objects of that type.

What I had in mind with the second sentence is clear enough. I mean, if you

take the type of truth values, you define it by saying that it has the two elements

true and false, and if you take the type of natural numbers, you define it by the first

two Peano axioms. If you take the product of two types, you define it by saying

that it is the type of pairs of elements coming from the two types, and so on. That

is clearly what I had in mind with the second sentence.

If you look at the first sentence, however, it is clear that I had something else

in mind, namely what in philosophical terminology you would call an essentialist

view, or an essentialist doctrine, as far as mathematical objects are concerned.

A mathematical object is not just an object: it is always a something. It is a

natural number or an integer or a rational number or a real number or a complex

number or a real-valued function or whatnot. Likewise, a mathematical structure—

which is not just one mathematical object, but several mathematical objects taken

collectively—is not just a structure. It is a group or a ring or a field or a Banach



6 PER MARTIN-LÖF

space or a category or whatever structure you are interested in. Structure by itself

does not make sense: a structure is always a structure of a certain kind, “structure

d’une espèce” in Bourbaki’s terminology.

Both for objects and for structures it is thus clear that they are always a some-

thing, and it is this something which traditionally is the essence of the object.

Every mathematical object is of a certain essence, or has a certain essence, namely

that property of the object—the essential property—that makes it into what it is.

That is simply the essentialist doctrine as applied to mathematics. That is quite

clearly what I had in mind in the first sentence. If you look at professor De Bruijn’s

writings on AUTOMATH, he writes beautifully about this in several places, and it

is clear that, for him also, this is what we must keep track of all the time: what

kind of object each mathematical object is. He took that as his basic doctrine, so

the first sentence here would fit his notion of type much better than the second one.

It is therefore perhaps not so strange that the initial formulation of type theory

was inconsistent, because it was based on a conflation of two notions: on the one

hand, that a type is defined by prescribing how its elements are formed, or what

possible forms its elements can take, and, on the other hand, that a type is the

whatness of a mathematical object, the essence of a mathematical object. Indeed,

in the further development, which involved getting rid of the paradox, eventually

these two notions were separated.

Two concepts have thus been conflated here, and we have a terminological prob-

lem. If we retain the term type, we have to choose whether we should use it for

the first or for the second concept. This is a terminological problem with which we

are still somehow struggling and which it is impossible to solve in any other way

than by making a decision. I can make a decision on what terminology to use, but

that will not decide what is going to be used generally. It is not quite clear yet

what is going to be the final solution, but at least the terminology that I am using

nowadays is that I call types in the first sense—like the type of truth values or the

type of natural numbers and so on—I call them sets instead. When I just lay down

what an object of the type is, then I call it a type.

This distinction is connected with what I began with, namely the earlier devel-

opment of type theory, the ramified theory of Principia as opposed to the simple

theory of types after Principia. The ramified types were quantificational domains,

as I said, and those were specified by giving the rules for forming them, which

meant the rules for forming formulas. The ramified types of propositions involved a

notion of order, and what a formula of a certain order is is laid down by a definition

where you say: these and these are the formulas—which is like defining a set in my

terminology.

The ramified types are thus indeed sets in my terminology, and you can quantify

over them, whereas when you go to the simple type structure, the simple types are

explained simply by saying what an object of the type in question is. The type of

propositions has to have an explanation of what a proposition is, and the function

type will have a definition of what a function taking objects of type α to objects

of type β is. That definition of function does not take the form of giving rules for



SETS, TYPES AND CATEGORIES 7

how they are formed. It is essentially the definition that a function is something

which, when applied to something of type α, yields something of type β—which is

not to tell how functions are formed. It is an operative definition, telling how they

operate, rather.

The distinction in my present terminology between sets and types is thus the

crucial distinction that one had earlier between the ramified types and the simple

types, the ramified types being sets and the simple types being types.

Type theory, like any other logical system, has to be specified by first displaying

the forms of judgment that are used in the system and, after that, displaying the

rules of inference. In the original form of type theory, the forms of judgment, as I

would now write them, were the following:

A : set (x1 : A1, . . . , xn : An)

A = B : set (x1 : A1, . . . , xn : An)

a : A (x1 : A1, . . . , xn : An)

a = b : A (x1 : A1, . . . , xn : An)

The first says that A is a set depending on the variables x1, . . . , xn ranging over

previously introduced sets, A1, . . . , An, the second that two sets, A and B, are

definitionally equal, where both may depend on variables in this way, the third

that a is an element of the set A, again in such a context, and the fourth that a

and b are definitionally equal elements of A, depending on the displayed variables.

These are the forms of judgment in the original type theory, which we now call the

lower-level type theory—the explanation for that terminology will come later.

Saying that these are the forms of judgment can be said in a different way by

introducing the notion of category. The step is this, that if we start from the forms

of judgment, we can of course make an ordinary grammatical analysis of sentences

of these forms, just as we can with any other indicative, or declarative, sentence. If

you ask in the first case, for instance, What is the subject and what is the predicate?

The judgement says that A is a set depending on the variables x1, . . . , xn, and what

is the subject? The subject is that about which something is said in the sentence,

so A is the subject here, and the rest,

set (x1 : A1, . . . , xn : An)

is the predicate. In the second case we say of A and B that they are equal, and

here again we have the subject to the left of the colon and all of what is to the right

of the colon is the predicate.

In terms of the subject-predicate forms S : P and S = T : P—here I use the

convenient colon notation that De Bruijn has introduced for the copula—you see

that above we specialize the predicate P to one of two possibilities: to the predicate

that you have in the first two cases, namely

set (x1 : A1, . . . , xn : An)



8 PER MARTIN-LÖF

or to the predicate that you have in the last two cases,

A (x1 : A1, . . . , xn : An)

This is the predicate ‘element of A depending on these variables’, but I just write

A for element of A. If we now call these categories, then you see what the corre-

spondence between the categories and the forms of judgment is.

This thus explains how you go from the forms of judgment to the categories.

Conversely, if these are the categories, and they are what you fill in for the predicate

P , then you get the above forms of judgment.

Displaying the forms of judgment and displaying—in a table, if you want, or in a

list, as Aristotle did—what the categories are is thus to do one and the same thing.

Whatever way you do it, displaying the forms, as I have done here, is only half

of what you have to do: you also have to give the other half, the semantical half,

which means—in terms of the forms of judgment—explaining what a judgment of

each one of these four forms means. I shall not undertake that now, but simply

assume that it has been correctly done. So there are meaning explanations for

these four forms of judgment, and they lay down, for each of these two forms of

category, what an object of the category is and what it means for two objects of

the category to be equal. The first explanation is what Dummett has introduced

the convenient term criterion of application for, whereas the second explanation is

what Frege introduced the term criterion of identity for. A category is thus defined

by its criterion of application and its criterion of identity.

These are then the categories of the lower-level type theory. Observe that you

have to proceed in this way, by simply displaying them. I ought to have made it

clear also that category is the Aristotelian term and displaying them in this way, in

terms of the forms of judgment, is in the Kantian spirit. The idea that you get to the

categories by looking at your forms of judgment, that is precisely what Kant called

“der transzendentale Leitfaden der Entdeckung aller reinen Verstandesbegriffe”, so

the pure concepts of understanding, which are the categories. The clue to their

discovery was to look at the forms of judgment that you are using in your logic and

from these extract the categories.

This was lower-level type theory. Then we have made probably the most im-

portant step after the early 1970s, in 1986, when the higher-level type theory was

introduced. That was an extension of the lower-level type theory, and the exten-

sion meant that more forms of judgement were introduced, which is to say more

categories. The difference is this, that the general structure here is retained, but

sets are replaced by types. Remember the quotations that I have shown, where

there was the conflation of two notions of set and type. In the lower-level type

theory there is only talk about sets and their elements, but now in the higher-level

type theory we have, not only sets, but also types. That means that these forms of

judgment are, so to say, raised one level up, so that now we have type instead of



SETS, TYPES AND CATEGORIES 9

set in the first two, and in the second two we have types rather than sets,

α : type (x1 : α1, . . . , xn : αn)

α = β : type (x1 : α1, . . . , xn : αn)

a : α (x1 : α1, . . . , xn : αn)

a = b : α (x1 : α1, . . . , xn : αn)

As you can see, I use small Greek letters for types.

These are now the forms of judgment of the higher-level type theory, and if we

use the same procedure here, that means that the categories of the lower-level type

theory have now been changed to

type (x1 : α1, . . . , xn : αn)

and

α (x1 : α1, . . . , xn : αn)

This is an extension of what you have in the lower-level type theory for the following

reason. The two forms of category of the lower-level type theory are absorbed in

the second form of category here because of the first two rules of type formation,

set : type
A : set

elem(A) : type

The first rule says that set is a type, and the second rule that if A is a set, then A

is also a type, namely the type of elements of A, which you may write as elem(A).

We need only specialize α and α1, . . . , αn to these forms to get the categories of the

lower-level type theory. The first form of category, however, namely the category

type (x1 : α1, . . . , xn : αn)

was not on our previous list, so we have extended our system of categories.

The last rule of type formation says that if α is a type and β is a type depending

on a variable that is ranging over α, then we may form the dependent function

type, (x : α)β,

α : type

(x : α)

β : type

(x : α)β : type

These three rules of type formation clearly generalize Church’s rules of type

formation. The type set corresponds to Church’s o, and if you have a fixed set

A, then that gives rise to a type, elem(A), corresponding to Church’s ι, although

Church had only one fixed domain, whereas here the domains are generated in the

theory itself. Finally, the dependent function type, (x : α)β, includes as a special

case the non-dependent function type, (α)β, in the case when β does not depend

on the variable x of type α. So this type structure is a generalization of Church’s.

Now you see we are faced with the problem of meaning and the explanation

of what a type is as well as what it means for two types to be equal. From this

explanation it should become clear how types are related to categories, that is, in



10 PER MARTIN-LÖF

what sense types are similar to categories and in what way, nevertheless, there is a

distinction between them.

The explanation of types is this, that the types—or more generally, families of

types, if you have arguments—are generated by these rules. From the purely formal

point of view, they are just generated by these rules. These rules give you the type

structure. Simultaneously with the generation of the types, however, it has to be

explained what an object of the type is, as well as what it means for two objects

of the type to be the same. That means that you have to explain what a set is

and what it means for two sets to be equal, which has been done already in the

lower-level type theory. Then you have to explain, for a set A, what an element

of A is and what it means for two elements of A to be equal, and that has also

already been done in the lower-level type theory. Finally, you have to provide an

explanation, given a type α and a family of types β, of what an object of the type

(x : α)β is and of what it means for two objects of this type to be equal. The

explanation is that an object of this type is a function, f say, and a function means

by definition that when you apply it to an object of type α, you get as a result an

object of type β with the appropriate substitution, and moreover, when you apply

f to equal objects of type α, then you get equal objects of the corresponding type

β as a result,

f : (x : α)β a : α

f(a) : β(a/x)

f : (x : α)β a = b : α

f(a) = f(b) : β(a/x)

This is the explanation of what a function is, and it is the explanation of the

dependent function type.

The notion of type is thus fixed by giving these rules for forming types, or

generating the types, and simultaneously with that, explaining what an object of

each type is and what it is for two objects of the type in question to be equal.

Now you see, first of all, the similarity with categories, because also a category is

defined by explaining what an object of the category is and what it means for two

objects of the category to be equal. For categories, that is all, hence the system of

categories is left open to the possibility of introducing new categories. We have an

example of that when we moved from the lower-level to the higher-level type theory,

since then we introduced new categories and got a bigger list, or a bigger table. In

my definition of type, however, I am saying something more stringent, namely that

it is essential to the notion of type to be something which is generated, or formed,

by means of these rules. There are no other types than those that can be formed

by means of these rules. Of course, they are not formed purely formally by these

rules, because with each rule there is associated the semantical explanations that I

just gave, which took the form of explaining what an object of the type is and what

it means for two objects of the type to be equal. There is thus a difference between

types and categories, namely that there is a more stringent requirement on types.

The conclusion that I have reached here about how types are related to categories

can perhaps be expressed as follows, that types are objectified categories. In any

system of types—already when you have the usual rules for forming the simple type



SETS, TYPES AND CATEGORIES 11

hierarchy—we are saying that something is a type,

α : type

That means that you have a form of judgment here, where you say that something is

a type, and that form of judgment is eventually the same as a category, the category

of types in this case. So as soon as we give rules for forming types, we are forced to

introduce this form of judgment, because without it we cannot formulate our rules.

That means that we are introducing a new category, namely the category of types

and making the types themselves into objects of that category. We can therefore

say that types are objectified categories, or in the idiom preferred by De Bruijn,

one can say that types are categories that are pushed from the metalanguage into

the object language, as they are made into objects. If you want to put it in the

other direction, you may say that categories are metalinguistic types rather than

object-linguistic types. They are the metalinguistic analogues of types. [End of

first side of tape.]

. . . objects of types and objects of categories, but there is a slight difference then

in the concept of object, and there is an expression in computer science for this

difference. Computer scientists talk about first-class objects, which are objects that

can be assigned as values to variables, for instance—that is their most important

property—whereas if you take
√
x or something like that, it is a real-valued function,

but it is not a first-class object, because you have a variable, x, in it. You may

phrase this by saying that objects of types are first-class objects, whereas objects

of categories are only second-class objects.

With respect to variables, there is a very clear difference between types and

categories, namely that types are what the object-linguistic variables, x, y, . . . range

over. That is because of the rule for introducing variables, namely that, whenever

you have a type α, you may introduce an object-linguistic variable, x say, ranging

over that type. On the other hand, the metalinguistic variables, or the schematic

variables, a, b, . . . , α, β, . . . that I have been using here all the time, are always tied

to a category. So metalinguistic variables are always tied to categories, whereas

object-linguistic variables are tied to types.

Yet another way of explaining, or clarifying, the difference between types and

categories is available for those who are familiar with universes in type theory—I

am just taking for granted now that you know what a universe is in type theory.

We may say that types are to categories as elements of a universe are to sets.

This is because of how a universe is defined. A universe is defined by stipulating

how certain codes for sets are generated, or formed, and simultaneously with that

generation you have to explain what set it encodes. This is completely analogous to

what I said about types, namely that we give the rules of type formation, we specify

how types are formed, but simultaneously with that we have to explain what an

object of the type is and what it means for two objects of the type to be equal,

which is the same as saying what category the type in question determines. Just

as types are objectified categories, in the same way, you may think of elements of

a universe as elementized sets: sets made into elements of a universe.



12 PER MARTIN-LÖF

Seeing the hierarchy that you have in type theory—with elements of sets, and sets

themselves forming a type, and the types forming a category—and being in Leiden,

it is impossible not to remember the Linnean classification of the animal kingdom

and the vegetable kingdom and the mineral kingdom, namely, the classification into

species, genera, orders and classes. For instance, the animal kingdom was divided

into the classes of mammals, birds and so on. The correspondence here with the

concepts of type theory is quite clear, so one could use the Linnean terminology if

one wanted to. It would have been quite perfect to call sets genera, elements of sets

species of the genus in question, and then for types you could use orders, and for

the categories you could use classes, although of course we ought to pay respect to

Aristotle and retain his term category.

Just as the animal, vegetable and mineral kingdoms are divided into classes,

orders, genera and species, you may ask what realm, or kingdom, it is that is

divided into categories and types and sets and elements? That is clear, of course:

it is the logical realm, or one could say the ontological realm, namely the realm

of logical objects. The objects of logic and pure mathematics are classified into

this hierarchy. This realm came to the forefront in the most clear way for the first

time with Bolzano, with his Sätze an sich and Vorstellungen an sich. They are

logical objects in Frege’s terminology, which was taken over by Wittgenstein and

Russell. The second example of this kind are the objects of Cantorian set theory,

which means first and foremost sets themselves: sets are objects belonging to this

logical realm. Then, around the turn of the century, this conception had a kind of

breakthrough within the Brentano school and in particular with Husserl, although

he preferred the term categorial objects rather than logical objects.

My last remark is about the relation between categories thought of as linguistic

categories, meaning categories—Bedeutungskategorien is Husserl’s term—on the

one hand, and objectual categories, on the other hand—in Husserl’s terminology,

the formal-ontological categories. Are categories categories of linguistic entities or

are they ontological categories, categories of objects? To my mind, the answer to

this old question, which arose immediately after Aristotle introduced the categories,

because they appear both in the Organon and in the Metaphysics—so there was a

discussion by the commentators on Aristotle in late Antiquity: are they primarily

the one or the other? And how are the two conceptions related to each other? I

think that the answer to this question is that the categories are as much logical as

they are ontological categories, simply because the objects of ontology are meaning

objects, that is, they are meanings in the objective sense. It is meanings, of course,

that are the objects of semantical categories, the Bedeutungskategorien, but if the

objects of the ontological categories are meaning objects, then the categories are

after all the same, and the duplication of categories into meaning categories and

ontological categories is actually a mere coincidence.


